// // CRTOpenGL.hpp // Clock Signal // // Created by Thomas Harte on 13/02/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #ifndef CRTOpenGL_h #define CRTOpenGL_h #include "../CRTTypes.hpp" #include "CRTConstants.hpp" #include "OpenGL.hpp" #include "TextureTarget.hpp" #include "Shader.hpp" #include "CRTInputBufferBuilder.hpp" #include "Shaders/OutputShader.hpp" #include namespace Outputs { namespace CRT { class OpenGLOutputBuilder { private: // colour information ColourSpace _colour_space; unsigned int _colour_cycle_numerator; unsigned int _colour_cycle_denominator; OutputDevice _output_device; // timing information to allow reasoning about input information unsigned int _cycles_per_line; unsigned int _height_of_display; unsigned int _horizontal_scan_period; unsigned int _vertical_scan_period; unsigned int _vertical_period_divider; // The user-supplied visible area Rect _visible_area; // Other things the caller may have provided. char *_composite_shader; char *_rgb_shader; // Methods used by the OpenGL code void prepare_rgb_output_shader(); void prepare_composite_output_shader(); std::unique_ptr prepare_output_shader(char *fragment_shader, bool use_usampler, GLenum source_texture_unit); void prepare_composite_input_shader(); std::unique_ptr prepare_intermediate_shader(const char *input_position, const char *header, char *fragment_shader, GLenum texture_unit, bool extends); void prepare_output_vertex_array(); void prepare_source_vertex_array(); // the run and input data buffers std::unique_ptr _buffer_builder; std::shared_ptr _output_mutex; // transient buffers indicating composite data not yet decoded uint16_t _composite_src_output_y, _cleared_composite_output_y; char *get_input_vertex_shader(const char *input_position, const char *header); char *get_input_fragment_shader(); char *get_y_filter_fragment_shader(); char *get_chrominance_filter_fragment_shader(); std::unique_ptr rgb_shader_program, composite_output_shader_program; std::unique_ptr composite_input_shader_program, composite_y_filter_shader_program, composite_chrominance_filter_shader_program; GLuint output_array_buffer, output_vertex_array; GLuint source_array_buffer, source_vertex_array; GLint windowSizeUniform, timestampBaseUniform; GLint boundsOriginUniform, boundsSizeUniform; GLuint textureName, shadowMaskTextureName; GLuint defaultFramebuffer; std::unique_ptr compositeTexture; // receives raw composite levels std::unique_ptr filteredYTexture; // receives filtered Y in the R channel plus unfiltered I/U and Q/V in G and B std::unique_ptr filteredTexture; // receives filtered YIQ or YUV void perform_output_stage(unsigned int output_width, unsigned int output_height, OpenGL::OutputShader *const shader); void set_timing_uniforms(); void set_colour_space_uniforms(); public: OpenGLOutputBuilder(unsigned int buffer_depth); ~OpenGLOutputBuilder(); inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) { _colour_space = colour_space; _colour_cycle_numerator = colour_cycle_numerator; _colour_cycle_denominator = colour_cycle_denominator; set_colour_space_uniforms(); } inline void set_visible_area(Rect visible_area) { _visible_area = visible_area; } inline uint8_t *get_next_source_run() { _output_mutex->lock(); return &_source_buffer_data[_source_buffer_data_pointer % SourceVertexBufferDataSize]; } inline void complete_source_run() { _source_buffer_data_pointer += 2 * SourceVertexSize; _output_mutex->unlock(); } inline uint8_t *get_next_output_run() { _output_mutex->lock(); return &_output_buffer_data[_output_buffer_data_pointer % OutputVertexBufferDataSize]; } inline void complete_output_run(GLsizei vertices_written) { _output_buffer_data_pointer += vertices_written * OutputVertexSize; _output_mutex->unlock(); } inline OutputDevice get_output_device() { return _output_device; } inline uint16_t get_composite_output_y() { return _composite_src_output_y % IntermediateBufferHeight; } inline void increment_composite_output_y() { _composite_src_output_y++; } inline uint8_t *allocate_write_area(size_t required_length) { _output_mutex->lock(); _buffer_builder->allocate_write_area(required_length); uint8_t *output = _input_texture_data ? _buffer_builder->get_write_target(_input_texture_data) : nullptr; _output_mutex->unlock(); return output; } inline void reduce_previous_allocation_to(size_t actual_length) { _buffer_builder->reduce_previous_allocation_to(actual_length, _input_texture_data); } inline uint16_t get_last_write_x_posiiton() { return _buffer_builder->_write_x_position; } inline uint16_t get_last_write_y_posiiton() { return _buffer_builder->_write_y_position; } void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty); void set_openGL_context_will_change(bool should_delete_resources); void set_composite_sampling_function(const char *shader); void set_rgb_sampling_function(const char *shader); void set_output_device(OutputDevice output_device); void set_timing(unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider); uint8_t *_input_texture_data; GLuint _input_texture_array; GLsync _input_texture_sync; GLsizeiptr _input_texture_array_size; uint8_t *_source_buffer_data; GLsizei _source_buffer_data_pointer; GLsizei _drawn_source_buffer_data_pointer; uint8_t *_output_buffer_data; GLsizei _output_buffer_data_pointer; GLsizei _drawn_output_buffer_data_pointer; }; } } #endif /* CRTOpenGL_h */