// // Video.cpp // Clock Signal // // Created by Thomas Harte on 10/12/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #include "Video.hpp" #include using namespace Electron; #define graphics_line(v) ((((v) >> 7) - first_graphics_line + field_divider_line) % field_divider_line) #define graphics_column(v) ((((v) & 127) - first_graphics_cycle + 128) & 127) namespace { constexpr int cycles_per_line = 128; constexpr int lines_per_frame = 625; constexpr int cycles_per_frame = lines_per_frame * cycles_per_line; constexpr int crt_cycles_multiplier = 8; constexpr int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line; constexpr int field_divider_line = 312; // i.e. the line, simultaneous with which, the first field's sync ends. So if // the first line with pixels in field 1 is the 20th in the frame, the first line // with pixels in field 2 will be 20+field_divider_line constexpr int first_graphics_line = 31; constexpr int first_graphics_cycle = 33; constexpr int display_end_interrupt_line = 256; constexpr int real_time_clock_interrupt_1 = 16704; constexpr int real_time_clock_interrupt_2 = 56704; constexpr int display_end_interrupt_1 = (first_graphics_line + display_end_interrupt_line)*cycles_per_line; constexpr int display_end_interrupt_2 = (first_graphics_line + field_divider_line + display_end_interrupt_line)*cycles_per_line; } // MARK: - Lifecycle VideoOutput::VideoOutput(uint8_t *memory) : ram_(memory), crt_(crt_cycles_per_line, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red1Green1Blue1) { memset(palette_, 0xf, sizeof(palette_)); setup_screen_map(); setup_base_address(); // TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate. crt_.set_visible_area(crt_.get_rect_for_area(first_graphics_line - 1, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f)); } void VideoOutput::set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); } Outputs::Display::ScanStatus VideoOutput::get_scaled_scan_status() const { return crt_.get_scaled_scan_status() / float(crt_cycles_multiplier); } void VideoOutput::set_display_type(Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); } Outputs::Display::DisplayType VideoOutput::get_display_type() const { return crt_.get_display_type(); } // MARK: - Display update methods void VideoOutput::start_pixel_line() { current_pixel_line_ = (current_pixel_line_+1)&255; if(!current_pixel_line_) { start_line_address_ = start_screen_address_; current_character_row_ = 0; is_blank_line_ = false; } else { bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3); is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249))); if(!is_blank_line_) { start_line_address_++; if(current_character_row_ > 7) { start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8; current_character_row_ = 0; } } } current_screen_address_ = start_line_address_; current_pixel_column_ = 0; initial_output_target_ = current_output_target_ = nullptr; } void VideoOutput::end_pixel_line() { const int data_length = int(current_output_target_ - initial_output_target_); if(data_length) { crt_.output_data(data_length * current_output_divider_, size_t(data_length)); } current_character_row_++; } void VideoOutput::output_pixels(int number_of_cycles) { if(!number_of_cycles) return; if(is_blank_line_) { crt_.output_blank(number_of_cycles * crt_cycles_multiplier); } else { int divider = 1; switch(screen_mode_) { case 0: case 3: divider = 1; break; case 1: case 4: case 6: divider = 2; break; case 2: case 5: divider = 4; break; } if(!initial_output_target_ || divider != current_output_divider_) { const int data_length = int(current_output_target_ - initial_output_target_); if(data_length) { crt_.output_data(data_length * current_output_divider_, size_t(data_length)); } current_output_divider_ = divider; initial_output_target_ = current_output_target_ = crt_.begin_data(size_t(640 / current_output_divider_), size_t(8 / divider)); } #define get_pixel() \ if(current_screen_address_&32768) {\ current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\ }\ last_pixel_byte_ = ram_[current_screen_address_];\ current_screen_address_ = current_screen_address_+8 switch(screen_mode_) { case 0: case 3: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.eighty1bpp[last_pixel_byte_]; current_output_target_ += 8; current_pixel_column_++; } } else current_output_target_ += 8*number_of_cycles; break; case 1: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.eighty2bpp[last_pixel_byte_]; current_output_target_ += 4; current_pixel_column_++; } } else current_output_target_ += 4*number_of_cycles; break; case 2: if(initial_output_target_) { while(number_of_cycles--) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.eighty4bpp[last_pixel_byte_]; current_output_target_ += 2; current_pixel_column_++; } } else current_output_target_ += 2*number_of_cycles; break; case 4: case 6: if(initial_output_target_) { if(current_pixel_column_&1) { last_pixel_byte_ <<= 4; *reinterpret_cast(current_output_target_) = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 4; number_of_cycles--; current_pixel_column_++; } while(number_of_cycles > 1) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 4; last_pixel_byte_ <<= 4; *reinterpret_cast(current_output_target_) = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 4; number_of_cycles -= 2; current_pixel_column_+=2; } if(number_of_cycles) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.forty1bpp[last_pixel_byte_]; current_output_target_ += 4; current_pixel_column_++; } } else current_output_target_ += 4 * number_of_cycles; break; case 5: if(initial_output_target_) { if(current_pixel_column_&1) { last_pixel_byte_ <<= 2; *reinterpret_cast(current_output_target_) = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 2; number_of_cycles--; current_pixel_column_++; } while(number_of_cycles > 1) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 2; last_pixel_byte_ <<= 2; *reinterpret_cast(current_output_target_) = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 2; number_of_cycles -= 2; current_pixel_column_+=2; } if(number_of_cycles) { get_pixel(); *reinterpret_cast(current_output_target_) = palette_tables_.forty2bpp[last_pixel_byte_]; current_output_target_ += 2; current_pixel_column_++; } } else current_output_target_ += 2*number_of_cycles; break; } #undef get_pixel } } void VideoOutput::run_for(const Cycles cycles) { int number_of_cycles = int(cycles.as_integral()); const auto start_position = output_position_; output_position_ = (output_position_ + number_of_cycles) % cycles_per_frame; if( (start_position < real_time_clock_interrupt_1 && output_position_ >= real_time_clock_interrupt_1) || (start_position < real_time_clock_interrupt_2 && output_position_ >= real_time_clock_interrupt_2) ) { interrupts_ = Electron::Interrupt(interrupts_ | Electron::Interrupt::RealTimeClock); } if( (start_position < display_end_interrupt_1 && output_position_ >= display_end_interrupt_1) || (start_position < display_end_interrupt_2 && output_position_ >= display_end_interrupt_2) ) { interrupts_ = Electron::Interrupt(interrupts_ | Electron::Interrupt::DisplayEnd); } while(number_of_cycles) { int draw_action_length = screen_map_[screen_map_pointer_].length; int time_left_in_action = std::min(number_of_cycles, draw_action_length - cycles_into_draw_action_); if(screen_map_[screen_map_pointer_].type == DrawAction::Pixels) output_pixels(time_left_in_action); number_of_cycles -= time_left_in_action; cycles_into_draw_action_ += time_left_in_action; if(cycles_into_draw_action_ == draw_action_length) { switch(screen_map_[screen_map_pointer_].type) { case DrawAction::Sync: crt_.output_sync(draw_action_length * crt_cycles_multiplier); break; case DrawAction::ColourBurst: crt_.output_default_colour_burst(draw_action_length * crt_cycles_multiplier); break; case DrawAction::Blank: crt_.output_blank(draw_action_length * crt_cycles_multiplier); break; case DrawAction::Pixels: end_pixel_line(); break; } screen_map_pointer_ = (screen_map_pointer_ + 1) % screen_map_.size(); cycles_into_draw_action_ = 0; if(screen_map_[screen_map_pointer_].type == DrawAction::Pixels) start_pixel_line(); } } } // MARK: - Register hub void VideoOutput::write(int address, uint8_t value) { switch(address & 0xf) { case 0x02: start_screen_address_ = (start_screen_address_ & 0xfe00) | uint16_t((value & 0xe0) << 1); if(!start_screen_address_) start_screen_address_ |= 0x8000; break; case 0x03: start_screen_address_ = (start_screen_address_ & 0x01ff) | uint16_t((value & 0x3f) << 9); if(!start_screen_address_) start_screen_address_ |= 0x8000; break; case 0x07: { // update screen mode uint8_t new_screen_mode = (value >> 3)&7; if(new_screen_mode == 7) new_screen_mode = 4; if(new_screen_mode != screen_mode_) { screen_mode_ = new_screen_mode; setup_base_address(); } } break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: { constexpr int registers[4][4] = { {10, 8, 2, 0}, {14, 12, 6, 4}, {15, 13, 7, 5}, {11, 9, 3, 1}, }; const int index = (address >> 1)&3; const uint8_t colour = ~value; if(address&1) { palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4); palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4); palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4); palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4); palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2); palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2); } else { palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1); palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1); palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1); palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1); palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2); palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2); } // regenerate all palette tables for now for(int byte = 0; byte < 256; byte++) { uint8_t *target = reinterpret_cast(&palette_tables_.forty1bpp[byte]); target[0] = palette_[(byte&0x80) >> 4]; target[1] = palette_[(byte&0x40) >> 3]; target[2] = palette_[(byte&0x20) >> 2]; target[3] = palette_[(byte&0x10) >> 1]; target = reinterpret_cast(&palette_tables_.eighty2bpp[byte]); target[0] = palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)]; target[1] = palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]; target[2] = palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)]; target[3] = palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]; target = reinterpret_cast(&palette_tables_.eighty1bpp[byte]); target[0] = palette_[(byte&0x80) >> 4]; target[1] = palette_[(byte&0x40) >> 3]; target[2] = palette_[(byte&0x20) >> 2]; target[3] = palette_[(byte&0x10) >> 1]; target[4] = palette_[(byte&0x08) >> 0]; target[5] = palette_[(byte&0x04) << 1]; target[6] = palette_[(byte&0x02) << 2]; target[7] = palette_[(byte&0x01) << 3]; target = reinterpret_cast(&palette_tables_.forty2bpp[byte]); target[0] = palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)]; target[1] = palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]; target = reinterpret_cast(&palette_tables_.eighty4bpp[byte]); target[0] = palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)]; target[1] = palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]; } } break; } } void VideoOutput::setup_base_address() { switch(screen_mode_) { case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break; case 3: screen_mode_base_address_ = 0x4000; break; case 4: case 5: screen_mode_base_address_ = 0x5800; break; case 6: screen_mode_base_address_ = 0x6000; break; } } // MARK: - Interrupts Cycles VideoOutput::get_next_sequence_point() { if(output_position_ < real_time_clock_interrupt_1) { return real_time_clock_interrupt_1 - output_position_; } if(output_position_ < display_end_interrupt_1) { return display_end_interrupt_1 - output_position_; } if(output_position_ < real_time_clock_interrupt_2) { return real_time_clock_interrupt_2 - output_position_; } if(output_position_ < display_end_interrupt_2) { return display_end_interrupt_2 - output_position_; } return real_time_clock_interrupt_1 + cycles_per_frame - output_position_; } Electron::Interrupt VideoOutput::get_interrupts() { const auto interrupts = interrupts_; interrupts_ = Electron::Interrupt(0); return interrupts; } // MARK: - RAM timing and access information unsigned int VideoOutput::get_cycles_until_next_ram_availability(int from_time) { unsigned int result = 0; int position = (output_position_ + from_time) % cycles_per_frame; // Apply the standard cost of aligning to the available 1Mhz of RAM bandwidth. result += 1 + (position&1); // In Modes 0-3 there is also a complete block on any access while pixels are being fetched. if(screen_mode_ < 4) { const int current_column = graphics_column(position + (position&1)); int current_line = graphics_line(position); if(current_column < 80 && current_line < 256) { // Mode 3 is a further special case: in 'every ten line block', the final two aren't painted, // so the CPU is allowed access. But the offset of the ten-line blocks depends on when the // user switched into Mode 3, so that needs to be calculated relative to current output. if(screen_mode_ == 3) { // Get the line the display was on. int output_position_line = graphics_line(output_position_); int implied_row; if(current_line >= output_position_line) { // Get the number of lines since then if still in the same frame. int lines_since_output_position = current_line - output_position_line; // Therefore get the character row at the proposed time, modulo 10. implied_row = (current_character_row_ + lines_since_output_position) % 10; } else { // If the frame has rolled over, the implied row is just related to the current line. implied_row = current_line % 10; } // Mode 3 ends after 250 lines, not the usual 256. if(implied_row < 8 && current_line < 250) result += unsigned(80 - current_column); } else result += unsigned(80 - current_column); } } return result; } VideoOutput::Range VideoOutput::get_memory_access_range() { // This can't be more specific than this without applying a lot more thought because of mixed modes: // suppose a program runs half the screen in an 80-column mode then switches to 40 columns. Then the // real end address will be at 128*80 + 128*40 after the original base, subject to wrapping that depends // on where the overflow occurred. Assuming accesses may run from the lowest possible position through to // the end of RAM is good enough for 95% of use cases however. VideoOutput::Range range; range.low_address = std::min(start_screen_address_, screen_mode_base_address_); range.high_address = 0x8000; return range; } // MARK: - The screen map void VideoOutput::setup_screen_map() { /* Odd field: Even field: |--S--| -S-| |--S--| |--S--| |-S-B-| = 3 |--S--| = 2.5 |--B--| |--B--| |--P--| |--P--| |--B--| = 312 |--B--| = 312.5 |-B- */ for(int c = 0; c < 2; c++) { if(c&1) { screen_map_.emplace_back(DrawAction::Sync, (cycles_per_line * 5) >> 1); screen_map_.emplace_back(DrawAction::Blank, cycles_per_line >> 1); } else { screen_map_.emplace_back(DrawAction::Blank, cycles_per_line >> 1); screen_map_.emplace_back(DrawAction::Sync, (cycles_per_line * 5) >> 1); } for(int l = 0; l < first_graphics_line - 3; l++) emplace_blank_line(); for(int l = 0; l < 256; l++) emplace_pixel_line(); for(int l = 256 + first_graphics_line; l < 312; l++) emplace_blank_line(); if(c&1) emplace_blank_line(); } } void VideoOutput::emplace_blank_line() { screen_map_.emplace_back(DrawAction::Sync, 9); screen_map_.emplace_back(DrawAction::ColourBurst, 24 - 9); screen_map_.emplace_back(DrawAction::Blank, 128 - 24); } void VideoOutput::emplace_pixel_line() { // output format is: // 9 cycles: sync // ... to 24 cycles: colour burst // ... to first_graphics_cycle: blank // ... for 80 cycles: pixels // ... until end of line: blank screen_map_.emplace_back(DrawAction::Sync, 9); screen_map_.emplace_back(DrawAction::ColourBurst, 24 - 9); screen_map_.emplace_back(DrawAction::Blank, first_graphics_cycle - 24); screen_map_.emplace_back(DrawAction::Pixels, 80); screen_map_.emplace_back(DrawAction::Blank, 48 - first_graphics_cycle); }