// // 6522.hpp // Clock Signal // // Created by Thomas Harte on 06/06/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #ifndef _522_hpp #define _522_hpp #include #include namespace MOS { class MOS6522Delegate { public: virtual void mos6522_did_change_interrupt_status(void *mos6522) = 0; }; template class MOS6522 { private: enum InterruptFlag: uint8_t { CA2ActiveEdge = 1 << 0, CA1ActiveEdge = 1 << 1, ShiftRegister = 1 << 2, CB2ActiveEdge = 1 << 3, CB1ActiveEdge = 1 << 4, Timer2 = 1 << 5, Timer1 = 1 << 6, }; public: void set_register(int address, uint8_t value) { address &= 0xf; // printf("6522 %p: %d <- %02x\n", this, address, value); switch(address) { case 0x0: _registers.output[1] = value; static_cast(this)->set_port_output(1, value); // TODO: handshake break; case 0x1: _registers.output[0] = value; static_cast(this)->set_port_output(0, value); // TODO: handshake break; case 0xf: // No handshake, so write directly _registers.output[0] = value; static_cast(this)->set_port_output(0, value); break; case 0x2: _registers.data_direction[1] = value; break; case 0x3: _registers.data_direction[0] = value; break; // Timer 1 case 0x6: case 0x4: _registers.timer_latch[0] = (_registers.timer_latch[0]&0xff00) | value; break; case 0x5: case 0x7: _registers.timer_latch[0] = (_registers.timer_latch[0]&0x00ff) | (uint16_t)(value << 8); _registers.interrupt_flags &= ~InterruptFlag::Timer1; if(address == 0x05) { _registers.timer[0] = _registers.timer_latch[0]; _timer_is_running[0] = true; } reevaluate_interrupts(); break; // Timer 2 case 0x8: _registers.timer_latch[1] = value; break; case 0x9: _registers.interrupt_flags &= ~InterruptFlag::Timer2; _registers.timer[1] = _registers.timer_latch[1] | (uint16_t)(value << 8); _timer_is_running[1] = true; reevaluate_interrupts(); break; // Shift case 0xa: _registers.shift = value; break; // Control case 0xb: _registers.auxiliary_control = value; break; case 0xc: _registers.peripheral_control = value; break; // Interrupt control case 0xd: _registers.interrupt_flags &= ~value; reevaluate_interrupts(); break; case 0xe: if(value&0x80) _registers.interrupt_enable |= value; else _registers.interrupt_enable &= ~value; reevaluate_interrupts(); break; } } uint8_t get_register(int address) { address &= 0xf; // printf("6522 %p: %d\n", this, address); switch(address) { // case 0x0: return (_registers.auxiliary_control & 0x40) ? _registers.input[1] : static_cast(this)->get_port_input(1); case 0x0: return _registers.output[1];//static_cast(this)->get_port_input(1); case 0xf: // TODO: handshake, latching case 0x1: return static_cast(this)->get_port_input(0); case 0x2: return _registers.data_direction[1]; case 0x3: return _registers.data_direction[0]; // Timer 1 case 0x4: _registers.interrupt_flags &= ~InterruptFlag::Timer1; reevaluate_interrupts(); return _registers.timer[0] & 0x00ff; case 0x5: return _registers.timer[0] >> 8; case 0x6: return _registers.timer_latch[0] & 0x00ff; case 0x7: return _registers.timer_latch[0] >> 8; // Timer 2 case 0x8: _registers.interrupt_flags &= ~InterruptFlag::Timer2; reevaluate_interrupts(); return _registers.timer[1] & 0x00ff; case 0x9: return _registers.timer[1] >> 8; case 0xa: return _registers.shift; case 0xb: return _registers.auxiliary_control; case 0xc: return _registers.peripheral_control; case 0xd: return _registers.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00); case 0xe: return _registers.interrupt_enable | 0x80; } return 0xff; } void set_control_line_input(int port, int line, bool value) { } void run_for_cycles(unsigned int number_of_cycles) { _registers.timer[0] -= number_of_cycles; _registers.timer[1] -= number_of_cycles; if(!_registers.timer[1] && _timer_is_running[1]) { _timer_is_running[1] = false; _registers.interrupt_flags |= InterruptFlag::Timer2; reevaluate_interrupts(); } if(!_registers.timer[0] && _timer_is_running[0]) { _registers.interrupt_flags |= InterruptFlag::Timer1; reevaluate_interrupts(); // TODO: reload shouldn't occur for a further 1.5 cycles if(_registers.auxiliary_control&0x40) _registers.timer[0] = _registers.timer_latch[0]; else _timer_is_running[0] = false; } // TODO: lots of other status effects } bool get_interrupt_line() { uint8_t interrupt_status = _registers.interrupt_flags & _registers.interrupt_enable & 0x7f; return !!interrupt_status; } void set_delegate(MOS6522Delegate *delegate) { _delegate = delegate; } MOS6522() : _timer_is_running{false, false}, _last_posted_interrupt_status(false) {} private: // Intended to be overwritten uint8_t get_port_input(int port) { return 0xff; } void set_port_output(int port, uint8_t value) {} // Delegate and communications MOS6522Delegate *_delegate; bool _last_posted_interrupt_status; inline void reevaluate_interrupts() { bool new_interrupt_status = get_interrupt_line(); if(new_interrupt_status != _last_posted_interrupt_status) { _last_posted_interrupt_status = new_interrupt_status; if(_delegate) _delegate->mos6522_did_change_interrupt_status(this); } } // The registers struct Registers { uint8_t output[2], input[2], data_direction[2]; uint16_t timer[2], timer_latch[2]; uint8_t shift; uint8_t auxiliary_control, peripheral_control; uint8_t interrupt_flags, interrupt_enable; // "A low reset (RES) input clears all R6522 internal registers to logic 0" Registers() : output{0, 0}, input{0, 0}, data_direction{0, 0}, auxiliary_control(0), peripheral_control(0), interrupt_flags(0), interrupt_enable(0) {} } _registers; // Internal state other than the registers bool _timer_is_running[2]; }; } #endif /* _522_hpp */