// // ScanTargetVertexArrayAttributs.cpp // Clock Signal // // Created by Thomas Harte on 11/11/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "ScanTarget.hpp" using namespace Outputs::Display::OpenGL; std::string ScanTarget::glsl_globals(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: return "#version 150\n" "uniform vec2 scale;" "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;" "uniform float rowHeight;" "uniform float processingWidth;" "in vec2 startPoint;" "in float startDataX;" "in float startCompositeAngle;" "in float startClock;" "in vec2 endPoint;" "in float endDataX;" "in float endCompositeAngle;" "in float endClock;" "in float dataY;" "in float lineY;" "in float compositeAmplitude;"; case ShaderType::Line: return "#version 150\n" "uniform vec2 scale;" "uniform float rowHeight;" "uniform float processingWidth;" "in vec2 startPoint;" "in vec2 endPoint;" "in float startClock;" "in float endClock;" "in float lineY;" "uniform sampler2D textureName;" "uniform vec2 origin;" "uniform vec2 size;"; } } std::vector ScanTarget::attribute_bindings(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: return { {"startPoint", 0}, {"startDataX", 1}, {"startCompositeAngle", 2}, {"startClock", 3}, {"endPoint", 4}, {"endDataX", 5}, {"endCompositeAngle", 6}, {"endClock", 7}, {"dataY", 8}, {"lineY", 9}, {"compositeAmplitude", 10}, }; case ShaderType::Line: return { {"startPoint", 0}, {"endPoint", 1}, {"startClock", 2}, {"endClock", 3}, {"lineY", 4}, }; } } std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: { std::string result; if(type == ShaderType::InputScan) { result += "out vec2 textureCoordinate;" "uniform usampler2D textureName;"; } else { result += "out vec2 textureCoordinates[15];" "out vec2 chromaCoordinates[2];" "uniform sampler2D textureName;" "uniform float chromaOffset;" "uniform float edgeExpansion;"; } result += "out float compositeAngle;" "out float oneOverCompositeAmplitude;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;" "oneOverCompositeAmplitude = mix(0.0, 255.0 / compositeAmplitude, step(0.01, compositeAmplitude));"; if(type == ShaderType::InputScan) { result += "textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY + 0.5) / textureSize(textureName, 0);" "vec2 eyePosition = vec2(mix(startClock, endClock, lateral), lineY + longitudinal) / vec2(2048.0, 2048.0);"; } else { result += "vec2 sourcePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + 0.5);" "vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);" "sourcePosition /= vec2(scale.x, 2048.0);" // "vec2 expansion = vec2(edgeExpansion, 0.0) / textureSize(textureName, 0);" // "eyePosition = eyePosition + expansion;" // "sourcePosition = sourcePosition + expansion;" "textureCoordinates[0] = sourcePosition + vec2(-7.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[1] = sourcePosition + vec2(-6.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[2] = sourcePosition + vec2(-5.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[3] = sourcePosition + vec2(-4.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[4] = sourcePosition + vec2(-3.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[5] = sourcePosition + vec2(-2.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[6] = sourcePosition + vec2(-1.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[7] = sourcePosition;" "textureCoordinates[8] = sourcePosition + vec2(1.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[9] = sourcePosition + vec2(2.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[10] = sourcePosition + vec2(3.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[11] = sourcePosition + vec2(4.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[12] = sourcePosition + vec2(5.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[13] = sourcePosition + vec2(6.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[14] = sourcePosition + vec2(7.0, 0.0) / textureSize(textureName, 0);" "chromaCoordinates[0] = sourcePosition + vec2(chromaOffset, 0.0);" "chromaCoordinates[1] = sourcePosition - vec2(chromaOffset, 0.0);" "eyePosition = eyePosition;"; } return result + "gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);" "}"; } case ShaderType::Line: return "out vec2 textureCoordinate;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "textureCoordinate = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);" "vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;" "vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;" "vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);" "gl_Position = vec4(eyePosition, 0.0, 1.0);" "}"; } } void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].x)), 1); target.enable_vertex_attribute_with_pointer( prefix + "DataX", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].data_offset)), 1); target.enable_vertex_attribute_with_pointer( prefix + "CompositeAngle", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].composite_angle)), 1); target.enable_vertex_attribute_with_pointer( prefix + "Clock", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].cycles_since_end_of_horizontal_retrace)), 1); } target.enable_vertex_attribute_with_pointer( "dataY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, data_y)), 1); target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, line)), 1); target.enable_vertex_attribute_with_pointer( "compositeAmplitude", 1, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.composite_amplitude)), 1); break; case ShaderType::Line: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, end_points[c].x)), 1); target.enable_vertex_attribute_with_pointer( prefix + "Clock", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, end_points[c].cycles_since_end_of_horizontal_retrace)), 1); } target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, line)), 1); break; } } std::unique_ptr ScanTarget::composition_shader(InputDataType input_data_type) { /* std::string fragment_shader = "#version 150\n" "out vec3 fragColour;" "in vec2 textureCoordinate;" "in float compositeAngle;" "in float oneOverCompositeAmplitude;" "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;" "uniform usampler2D textureName;" "uniform float phaseOffset;" "void main(void) {"; DisplayType computed_display_type; switch(input_data_type) { case InputDataType::Luminance1: computed_display_type = DisplayType::CompositeMonochrome; fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrr;"; if(computed_display_type != display_type) { fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);"; } break; case InputDataType::Luminance8: computed_display_type = DisplayType::CompositeMonochrome; fragment_shader += "fragColour = vec3(texture(textureName, textureCoordinate).r / 255.0);"; break; case InputDataType::PhaseLinkedLuminance8: computed_display_type = DisplayType::CompositeMonochrome; fragment_shader += "uint iPhase = uint((compositeAngle * 2.0 / 3.141592654) + phaseOffset*4.0) & 3u;" "fragColour = vec3(texture(textureName, textureCoordinate)[iPhase] / 255.0);"; break; case InputDataType::Luminance8Phase8: computed_display_type = DisplayType::SVideo; fragment_shader += "vec2 yc = texture(textureName, textureCoordinate).rg / vec2(255.0);" "float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;" "float rawChroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);" "fragColour = vec3(yc.x, 0.5 + rawChroma*0.5, 0.0);"; break; case InputDataType::Red1Green1Blue1: computed_display_type = DisplayType::RGB; fragment_shader += "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = uvec3(textureValue) & uvec3(4u, 2u, 1u);"; if(computed_display_type != display_type) { fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);"; } break; case InputDataType::Red2Green2Blue2: computed_display_type = DisplayType::RGB; fragment_shader += "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0;"; break; case InputDataType::Red4Green4Blue4: computed_display_type = DisplayType::RGB; fragment_shader += "uvec2 textureValue = texture(textureName, textureCoordinate).rg;" "fragColour = vec3(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0);"; break; case InputDataType::Red8Green8Blue8: computed_display_type = DisplayType::RGB; fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);"; break; }*/ // If the input type is RGB but the output type isn't then // there'll definitely be an RGB to SVideo step. // if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) { // fragment_shader += // "vec3 composite_colour = rgbToLumaChroma * fragColour;" // "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" // "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);"; // } // If the output type is SVideo, throw in an attempt to separate the two chrominance // channels here. // if(display_type == DisplayType::SVideo) { // if(computed_display_type != DisplayType::RGB) { // fragment_shader += // "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"; // } // fragment_shader += // "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);" // "fragColour = vec3(fragColour.x, chroma);"; // } // Add an SVideo to composite step if necessary. // if( // (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) && // computed_display_type != DisplayType::CompositeMonochrome // ) { // fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));"; // } std::string fragment_shader = "#version 150\n" "out vec4 fragColour;" "in vec2 textureCoordinate;" "uniform usampler2D textureName;" "void main(void) {"; switch(input_data_type) { case InputDataType::Luminance1: fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrrr;"; break; case InputDataType::Luminance8: fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrrr / vec4(255.0);"; break; case InputDataType::PhaseLinkedLuminance8: case InputDataType::Luminance8Phase8: case InputDataType::Red8Green8Blue8: fragment_shader += "fragColour = texture(textureName, textureCoordinate) / vec4(255.0);"; break; case InputDataType::Red1Green1Blue1: fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr & uvec3(4u, 2u, 1u), 1.0);"; break; case InputDataType::Red2Green2Blue2: fragment_shader += "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = vec4(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u), 3.0) / 3.0;"; break; case InputDataType::Red4Green4Blue4: fragment_shader += "uvec2 textureValue = texture(textureName, textureCoordinate).rg;" "fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);"; break; } return std::unique_ptr(new Shader( glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan), fragment_shader + "}", attribute_bindings(ShaderType::InputScan) )); } std::unique_ptr ScanTarget::conversion_shader(InputDataType input_data_type, DisplayType display_type, int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { return nullptr; } // //SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) { // const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); // return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff); //} // //std::unique_ptr ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { // /* // Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that // from the original to get chrominance. // // (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth), // there'll be at least four samples per colour clock and in practice at most just a shade more than 9. // */ // auto shader = std::unique_ptr(new Shader( // glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), // "#version 150\n" // // "in vec2 textureCoordinates[15];" // "in vec2 chromaCoordinates[2];" // "in float compositeAngle;" // //// "uniform vec4 chromaWeights[4];" //// "uniform vec4 lumaWeights[4];" // "uniform sampler2D textureName;" // "uniform mat3 lumaChromaToRGB;" // // "out vec3 fragColour;" // "void main() {" // "vec2 angles = vec2(compositeAngle - 1.570795827, compositeAngle + 1.570795827);" // // "vec2 sines = sin(angles) * vec2(0.5) + vec2(0.5);" // "vec2 coses = cos(angles);" // "float denominator = sines.y * coses.x - sines.x * coses.y;" // // "vec2 samples = vec2(texture(textureName, chromaCoordinates[0]).g, texture(textureName, chromaCoordinates[1]).g);" // // "float channel1 = (samples.x * sines.x - samples.y * sines.y) / denominator;" // "float channel2 = (samples.x * coses.x - samples.y * coses.y) / denominator;" // //// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).r, channel1, channel2);" // "fragColour = vec3(sines.x + sines.y, 0.0, 0.0);" // //, 0.0);" // //// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).g, 0.0, 0.0);" //// "fragColour = vec3(0.5);" ///* "vec3 samples[15] = vec3[15](" // "texture(textureName, textureCoordinates[0]).rgb," // "texture(textureName, textureCoordinates[1]).rgb," // "texture(textureName, textureCoordinates[2]).rgb," // "texture(textureName, textureCoordinates[3]).rgb," // "texture(textureName, textureCoordinates[4]).rgb," // "texture(textureName, textureCoordinates[5]).rgb," // "texture(textureName, textureCoordinates[6]).rgb," // "texture(textureName, textureCoordinates[7]).rgb," // "texture(textureName, textureCoordinates[8]).rgb," // "texture(textureName, textureCoordinates[9]).rgb," // "texture(textureName, textureCoordinates[10]).rgb," // "texture(textureName, textureCoordinates[11]).rgb," // "texture(textureName, textureCoordinates[12]).rgb," // "texture(textureName, textureCoordinates[13]).rgb," // "texture(textureName, textureCoordinates[14]).rgb" // ");" // "vec4 samples0[4] = vec4[4](" // "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r)," // "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r)," // "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r)," // "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)" // ");" // "vec4 samples1[4] = vec4[4](" // "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," // "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," // "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g)," // "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)" // ");" // "vec4 samples2[4] = vec4[4](" // "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b)," // "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b)," // "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b)," // "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)" // ");" // "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);" // "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);" // "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);" // "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);" // "fragColour = lumaChromaToRGB * vec3(channel0, chroma);"*/ // "}", // attribute_bindings(ShaderType::ProcessedScan) // )); // // const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); // const float chroma_offset = 0.25f / cycles_per_expanded_line; // shader->set_uniform("chromaOffset", chroma_offset); // //// auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients(); //// chroma_coefficients.push_back(0.0f); //// shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data()); //// //// auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients(); //// luma_coefficients.push_back(0.0f); //// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); // // shader->set_uniform("edgeExpansion", 20); // // return shader; //} // //std::unique_ptr ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { // auto shader = std::unique_ptr(new Shader( // glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), // "#version 150\n" // // "in vec2 textureCoordinates[15];" // "in float compositeAngle;" // "in float oneOverCompositeAmplitude;" // // "uniform vec4 lumaWeights[4];" // "uniform sampler2D textureName;" // // "out vec3 fragColour;" // "void main() {" // "vec4 samples[4] = vec4[4](" // "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r)," // "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r)," // "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r)," // "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)" // ");" // "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);" // "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" // "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;" // "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));" // "}", // attribute_bindings(ShaderType::ProcessedScan) // )); // // auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f); // auto luma_coefficients = luma_low.get_coefficients(); // luma_coefficients.push_back(0.0f); // shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data()); // // shader->set_uniform("edgeExpansion", 10); // // return shader; //} //