// // Electron.cpp // Clock Signal // // Created by Thomas Harte on 03/01/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "Electron.hpp" using namespace Electron; #pragma mark - Lifecycle Machine::Machine() : interrupt_control_(0), interrupt_status_(Interrupt::PowerOnReset | Interrupt::TransmitDataEmpty | 0x80), cycles_since_display_update_(0), cycles_since_audio_update_(0), use_fast_tape_hack_(false), cycles_until_display_interrupt_(0) { memset(key_states_, 0, sizeof(key_states_)); for(int c = 0; c < 16; c++) memset(roms_[c], 0xff, 16384); tape_.set_delegate(this); set_clock_rate(2000000); } #pragma mark - Output void Machine::setup_output(float aspect_ratio) { video_output_.reset(new VideoOutput(ram_)); // The maximum output frequency is 62500Hz and all other permitted output frequencies are integral divisions of that; // however setting the speaker on or off can happen on any 2Mhz cycle, and probably (?) takes effect immediately. So // run the speaker at a 2000000Hz input rate, at least for the time being. speaker_.reset(new Speaker); speaker_->set_input_rate(2000000 / Speaker::clock_rate_divider); } void Machine::close_output() { video_output_.reset(); } std::shared_ptr Machine::get_crt() { return video_output_->get_crt(); } std::shared_ptr Machine::get_speaker() { return speaker_; } #pragma mark - The keyboard void Machine::clear_all_keys() { memset(key_states_, 0, sizeof(key_states_)); if(is_holding_shift_) set_key_state(KeyShift, true); } void Machine::set_key_state(uint16_t key, bool isPressed) { if(key == KeyBreak) { set_reset_line(isPressed); } else { if(isPressed) key_states_[key >> 4] |= key&0xf; else key_states_[key >> 4] &= ~(key&0xf); } } #pragma mark - Machine configuration void Machine::configure_as_target(const StaticAnalyser::Target &target) { if(target.tapes.size()) { tape_.set_tape(target.tapes.front()); } if(target.disks.size()) { plus3_.reset(new Plus3); if(target.acorn.has_dfs) { set_rom(ROMSlot0, dfs_, true); } if(target.acorn.has_adfs) { set_rom(ROMSlot4, adfs_, true); set_rom(ROMSlot5, std::vector(adfs_.begin() + 16384, adfs_.end()), true); } plus3_->set_disk(target.disks.front(), 0); } ROMSlot slot = ROMSlot12; for(std::shared_ptr cartridge : target.cartridges) { set_rom(slot, cartridge->get_segments().front().data, false); slot = (ROMSlot)(((int)slot + 1)&15); } if(target.loadingCommand.length()) // TODO: and automatic loading option enabled { set_typer_for_string(target.loadingCommand.c_str()); } if(target.acorn.should_shift_restart) { shift_restart_counter_ = 1000000; } } void Machine::set_rom(ROMSlot slot, std::vector data, bool is_writeable) { uint8_t *target = nullptr; switch(slot) { case ROMSlotDFS: dfs_ = data; return; case ROMSlotADFS: adfs_ = data; return; case ROMSlotOS: target = os_; break; default: target = roms_[slot]; rom_write_masks_[slot] = is_writeable; break; } memcpy(target, &data[0], std::min((size_t)16384, data.size())); } #pragma mark - The bus unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { unsigned int cycles = 1; if(address < 0x8000) { if(isReadOperation(operation)) { *value = ram_[address]; } else { if(address >= video_access_range_.low_address && address <= video_access_range_.high_address) update_display(); ram_[address] = *value; } // for the entire frame, RAM is accessible only on odd cycles; in modes below 4 // it's also accessible only outside of the pixel regions cycles += video_output_->get_cycles_until_next_ram_availability((int)(cycles_since_display_update_ + 1)); } else { switch(address & 0xff0f) { case 0xfe00: if(isReadOperation(operation)) { *value = interrupt_status_; interrupt_status_ &= ~PowerOnReset; } else { interrupt_control_ = (*value) & ~1; evaluate_interrupts(); } break; case 0xfe07: if(!isReadOperation(operation)) { // update speaker mode bool new_speaker_is_enabled = (*value & 6) == 2; if(new_speaker_is_enabled != speaker_is_enabled_) { update_audio(); speaker_->set_is_enabled(new_speaker_is_enabled); speaker_is_enabled_ = new_speaker_is_enabled; } tape_.set_is_enabled((*value & 6) != 6); tape_.set_is_in_input_mode((*value & 6) == 0); tape_.set_is_running(((*value)&0x40) ? true : false); // TODO: caps lock LED } // deliberate fallthrough case 0xfe02: case 0xfe03: case 0xfe08: case 0xfe09: case 0xfe0a: case 0xfe0b: case 0xfe0c: case 0xfe0d: case 0xfe0e: case 0xfe0f: if(!isReadOperation(operation)) { update_display(); video_output_->set_register(address, *value); video_access_range_ = video_output_->get_memory_access_range(); queue_next_display_interrupt(); } break; case 0xfe04: if(isReadOperation(operation)) { *value = tape_.get_data_register(); tape_.clear_interrupts(Interrupt::ReceiveDataFull); } else { tape_.set_data_register(*value); tape_.clear_interrupts(Interrupt::TransmitDataEmpty); } break; case 0xfe05: if(!isReadOperation(operation)) { const uint8_t interruptDisable = (*value)&0xf0; if( interruptDisable ) { if( interruptDisable&0x10 ) interrupt_status_ &= ~Interrupt::DisplayEnd; if( interruptDisable&0x20 ) interrupt_status_ &= ~Interrupt::RealTimeClock; if( interruptDisable&0x40 ) interrupt_status_ &= ~Interrupt::HighToneDetect; evaluate_interrupts(); // TODO: NMI } // latch the paged ROM in case external hardware is being emulated active_rom_ = (Electron::ROMSlot)(*value & 0xf); // apply the ULA's test if(*value & 0x08) { if(*value & 0x04) { keyboard_is_active_ = false; basic_is_active_ = false; } else { keyboard_is_active_ = !(*value & 0x02); basic_is_active_ = !keyboard_is_active_; } } } break; case 0xfe06: if(!isReadOperation(operation)) { update_audio(); speaker_->set_divider(*value); tape_.set_counter(*value); } break; case 0xfc04: case 0xfc05: case 0xfc06: case 0xfc07: if(plus3_ && (address&0x00f0) == 0x00c0) { if(is_holding_shift_ && address == 0xfcc4) { is_holding_shift_ = false; set_key_state(KeyShift, false); } if(isReadOperation(operation)) *value = plus3_->get_register(address); else plus3_->set_register(address, *value); } break; case 0xfc00: if(plus3_ && (address&0x00f0) == 0x00c0) { if(!isReadOperation(operation)) { plus3_->set_control_register(*value); } else *value = 1; } break; default: if(address >= 0xc000) { if(isReadOperation(operation)) { if( use_fast_tape_hack_ && tape_.has_tape() && (operation == CPU6502::BusOperation::ReadOpcode) && ( (address == 0xf4e5) || (address == 0xf4e6) || // double NOPs at 0xf4e5, 0xf6de, 0xf6fa and 0xfa51 (address == 0xf6de) || (address == 0xf6df) || // act to disable the normal branch into tape-handling (address == 0xf6fa) || (address == 0xf6fb) || // code, forcing the OS along the serially-accessed ROM (address == 0xfa51) || (address == 0xfa52) || // pathway. (address == 0xf0a8) // 0xf0a8 is from where a service call would normally be // dispatched; we can check whether it would be call 14 // (i.e. read byte) and, if so, whether the OS was about to // issue a read byte call to a ROM despite being the tape // FS being selected. If so then this is a get byte that // we should service synthetically. Put the byte into Y // and set A to zero to report that action was taken, then // allow the PC read to return an RTS. ) ) { uint8_t service_call = (uint8_t)get_value_of_register(CPU6502::Register::X); if(address == 0xf0a8) { if(!ram_[0x247] && service_call == 14) { tape_.set_delegate(nullptr); // TODO: handle tape wrap around. int cycles_left_while_plausibly_in_data = 50; tape_.clear_interrupts(Interrupt::ReceiveDataFull); while(!tape_.get_tape()->is_at_end()) { tape_.run_for_input_pulse(); cycles_left_while_plausibly_in_data--; if(!cycles_left_while_plausibly_in_data) fast_load_is_in_data_ = false; if( (tape_.get_interrupt_status() & Interrupt::ReceiveDataFull) && (fast_load_is_in_data_ || tape_.get_data_register() == 0x2a) ) break; } tape_.set_delegate(this); tape_.clear_interrupts(Interrupt::ReceiveDataFull); interrupt_status_ |= tape_.get_interrupt_status(); fast_load_is_in_data_ = true; set_value_of_register(CPU6502::Register::A, 0); set_value_of_register(CPU6502::Register::Y, tape_.get_data_register()); *value = 0x60; // 0x60 is RTS } else *value = os_[address & 16383]; } else *value = 0xea; } else { *value = os_[address & 16383]; } } } else { if(isReadOperation(operation)) { *value = roms_[active_rom_][address & 16383]; if(keyboard_is_active_) { *value &= 0xf0; for(int address_line = 0; address_line < 14; address_line++) { if(!(address&(1 << address_line))) *value |= key_states_[address_line]; } } if(basic_is_active_) { *value &= roms_[ROMSlotBASIC][address & 16383]; } } else if(rom_write_masks_[active_rom_]) { roms_[active_rom_][address & 16383] = *value; } } break; } } cycles_since_display_update_ += cycles; cycles_since_audio_update_ += cycles; if(cycles_since_audio_update_ > 16384) update_audio(); tape_.run_for_cycles(cycles); cycles_until_display_interrupt_ -= cycles; if(cycles_until_display_interrupt_ < 0) { signal_interrupt(next_display_interrupt_); update_display(); queue_next_display_interrupt(); } if(typer_) typer_->update((int)cycles); if(plus3_) plus3_->run_for_cycles(4*cycles); if(shift_restart_counter_) { shift_restart_counter_ -= cycles; if(shift_restart_counter_ <= 0) { shift_restart_counter_ = 0; set_power_on(true); set_key_state(KeyShift, true); is_holding_shift_ = true; } } return cycles; } void Machine::synchronise() { update_display(); update_audio(); speaker_->flush(); } #pragma mark - Deferred scheduling inline void Machine::update_display() { if(cycles_since_display_update_) { video_output_->run_for_cycles((int)cycles_since_display_update_); cycles_since_display_update_ = 0; } } inline void Machine::queue_next_display_interrupt() { VideoOutput::Interrupt next_interrupt = video_output_->get_next_interrupt(); cycles_until_display_interrupt_ = next_interrupt.cycles; next_display_interrupt_ = next_interrupt.interrupt; } inline void Machine::update_audio() { if(cycles_since_audio_update_) { unsigned int difference = cycles_since_audio_update_ / Speaker::clock_rate_divider; cycles_since_audio_update_ %= Speaker::clock_rate_divider; speaker_->run_for_cycles(difference); } } #pragma mark - Interrupts inline void Machine::signal_interrupt(Electron::Interrupt interrupt) { interrupt_status_ |= interrupt; evaluate_interrupts(); } inline void Machine::clear_interrupt(Electron::Interrupt interrupt) { interrupt_status_ &= ~interrupt; evaluate_interrupts(); } inline void Machine::evaluate_interrupts() { if(interrupt_status_ & interrupt_control_) { interrupt_status_ |= 1; } else { interrupt_status_ &= ~1; } set_irq_line(interrupt_status_ & 1); } #pragma mark - Tape::Delegate void Machine::tape_did_change_interrupt_status(Tape *tape) { interrupt_status_ = (interrupt_status_ & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | tape_.get_interrupt_status(); evaluate_interrupts(); }