// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include #include #include #include using namespace Outputs::CRT; void CRT::set_new_timing(int cycles_per_line, int height_of_display, Outputs::Display::ColourSpace colour_space, int colour_cycle_numerator, int colour_cycle_denominator, int vertical_sync_half_lines, bool should_alternate) { constexpr int millisecondsHorizontalRetraceTime = 7; // Source: Dictionary of Video and Television Technology, p. 234. constexpr int scanlinesVerticalRetraceTime = 8; // Source: ibid. // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about // 7 microseconds for horizontal retrace and 500 to 750 microseconds for vertical retrace // in NTSC and PAL TV." time_multiplier_ = 65535 / cycles_per_line; phase_denominator_ = int64_t(cycles_per_line) * int64_t(colour_cycle_denominator) * int64_t(time_multiplier_); phase_numerator_ = 0; colour_cycle_numerator_ = int64_t(colour_cycle_numerator); phase_alternates_ = should_alternate; is_alernate_line_ &= phase_alternates_; cycles_per_line_ = cycles_per_line; const int multiplied_cycles_per_line = cycles_per_line * time_multiplier_; // Allow sync to be detected (and acted upon) a line earlier than the specified requirement, // as a simple way of avoiding not-quite-exact comparison issues while still being true enough to // the gist for simple debugging. sync_capacitor_charge_threshold_ = ((vertical_sync_half_lines - 2) * cycles_per_line) >> 1; // Create the two flywheels: // // The horizontal flywheel has an ideal period of `multiplied_cycles_per_line`, will accept syncs // within 1/32nd of that (i.e. tolerates 3.125% error) and takes millisecondsHorizontalRetraceTime // to retrace. // // The vertical slywheel has an ideal period of `multiplied_cycles_per_line * height_of_display`, // will accept syncs within 1/8th of that (i.e. tolerates 12.5% error) and takes scanlinesVerticalRetraceTime // to retrace. horizontal_flywheel_ = std::make_unique(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 5); vertical_flywheel_ = std::make_unique(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3); // Figure out the divisor necessary to get the horizontal flywheel into a 16-bit range. const int real_clock_scan_period = vertical_flywheel_->get_scan_period(); vertical_flywheel_output_divider_ = (real_clock_scan_period + 65534) / 65535; // Communicate relevant fields to the scan target. scan_target_modals_.output_scale.x = uint16_t(horizontal_flywheel_->get_scan_period()); scan_target_modals_.output_scale.y = uint16_t(real_clock_scan_period / vertical_flywheel_output_divider_); scan_target_modals_.expected_vertical_lines = height_of_display; scan_target_modals_.composite_colour_space = colour_space; scan_target_modals_.colour_cycle_numerator = colour_cycle_numerator; scan_target_modals_.colour_cycle_denominator = colour_cycle_denominator; scan_target_->set_modals(scan_target_modals_); } void CRT::set_scan_target(Outputs::Display::ScanTarget *scan_target) { scan_target_ = scan_target; if(!scan_target_) scan_target_ = &Outputs::Display::NullScanTarget::singleton; scan_target_->set_modals(scan_target_modals_); } void CRT::set_new_data_type(Outputs::Display::InputDataType data_type) { scan_target_modals_.input_data_type = data_type; scan_target_->set_modals(scan_target_modals_); } void CRT::set_aspect_ratio(float aspect_ratio) { scan_target_modals_.aspect_ratio = aspect_ratio; scan_target_->set_modals(scan_target_modals_); } void CRT::set_visible_area(Outputs::Display::Rect visible_area) { scan_target_modals_.visible_area = visible_area; scan_target_->set_modals(scan_target_modals_); } void CRT::set_display_type(Outputs::Display::DisplayType display_type) { scan_target_modals_.display_type = display_type; scan_target_->set_modals(scan_target_modals_); } Outputs::Display::DisplayType CRT::get_display_type() const { return scan_target_modals_.display_type; } void CRT::set_phase_linked_luminance_offset(float offset) { scan_target_modals_.input_data_tweaks.phase_linked_luminance_offset = offset; scan_target_->set_modals(scan_target_modals_); } void CRT::set_input_data_type(Outputs::Display::InputDataType input_data_type) { scan_target_modals_.input_data_type = input_data_type; scan_target_->set_modals(scan_target_modals_); } void CRT::set_brightness(float brightness) { scan_target_modals_.brightness = brightness; scan_target_->set_modals(scan_target_modals_); } void CRT::set_new_display_type(int cycles_per_line, Outputs::Display::Type displayType) { switch(displayType) { case Outputs::Display::Type::PAL50: case Outputs::Display::Type::PAL60: scan_target_modals_.intended_gamma = 2.8f; set_new_timing(cycles_per_line, (displayType == Outputs::Display::Type::PAL50) ? 312 : 262, Outputs::Display::ColourSpace::YUV, 709379, 2500, 5, true); // i.e. 283.7516 colour cycles per line; 2.5 lines = vertical sync. break; case Outputs::Display::Type::NTSC60: scan_target_modals_.intended_gamma = 2.2f; set_new_timing(cycles_per_line, 262, Outputs::Display::ColourSpace::YIQ, 455, 2, 6, false); // i.e. 227.5 colour cycles per line, 3 lines = vertical sync. break; } } void CRT::set_composite_function_type(CompositeSourceType type, float offset_of_first_sample) { if(type == DiscreteFourSamplesPerCycle) { colour_burst_phase_adjustment_ = uint8_t(offset_of_first_sample * 256.0f) & 63; } else { colour_burst_phase_adjustment_ = 0xff; } } void CRT::set_input_gamma(float gamma) { scan_target_modals_.intended_gamma = gamma; scan_target_->set_modals(scan_target_modals_); } CRT::CRT( int cycles_per_line, int clocks_per_pixel_greatest_common_divisor, int height_of_display, Outputs::Display::ColourSpace colour_space, int colour_cycle_numerator, int colour_cycle_denominator, int vertical_sync_half_lines, bool should_alternate, Outputs::Display::InputDataType data_type) { scan_target_modals_.input_data_type = data_type; scan_target_modals_.cycles_per_line = cycles_per_line; scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor; set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, vertical_sync_half_lines, should_alternate); } CRT::CRT( int cycles_per_line, int clocks_per_pixel_greatest_common_divisor, Outputs::Display::Type display_type, Outputs::Display::InputDataType data_type) { scan_target_modals_.input_data_type = data_type; scan_target_modals_.cycles_per_line = cycles_per_line; scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor; set_new_display_type(cycles_per_line, display_type); } CRT::CRT(int cycles_per_line, int clocks_per_pixel_greatest_common_divisor, int height_of_display, int vertical_sync_half_lines, Outputs::Display::InputDataType data_type) { scan_target_modals_.input_data_type = data_type; scan_target_modals_.cycles_per_line = cycles_per_line; scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor; set_new_timing(cycles_per_line, height_of_display, Outputs::Display::ColourSpace::YIQ, 1, 1, vertical_sync_half_lines, false); } // MARK: - Sync loop Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, int cycles_to_run_for, int *cycles_advanced) { return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); } Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced) { return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); } Outputs::Display::ScanTarget::Scan::EndPoint CRT::end_point(uint16_t data_offset) { Display::ScanTarget::Scan::EndPoint end_point; end_point.x = uint16_t(horizontal_flywheel_->get_current_output_position()); end_point.y = uint16_t(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_); end_point.data_offset = data_offset; // TODO: this is a workaround for the limited precision that can be posted onwards; // it'd be better to make time_multiplier_ an explicit modal and just not divide by it. const auto lost_precision = cycles_since_horizontal_sync_ % time_multiplier_; end_point.composite_angle = int16_t(((phase_numerator_ - lost_precision * colour_cycle_numerator_) << 6) / phase_denominator_) * (is_alernate_line_ ? -1 : 1); end_point.cycles_since_end_of_horizontal_retrace = uint16_t(cycles_since_horizontal_sync_ / time_multiplier_); return end_point; } void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type, int number_of_samples) { number_of_cycles *= time_multiplier_; const bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data)); const auto total_cycles = number_of_cycles; bool did_output = false; while(number_of_cycles) { // Get time until next horizontal and vertical sync generator events. int time_until_vertical_sync_event, time_until_horizontal_sync_event; const Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); const Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // Whichever event is scheduled to happen first is the one to advance to. const int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); hsync_requested = false; vsync_requested = false; // Determine whether to output any data for this portion of the output; if so then grab somewhere to put it. const bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace()); Outputs::Display::ScanTarget::Scan *const next_scan = is_output_segment ? scan_target_->begin_scan() : nullptr; did_output |= is_output_segment; // If outputting, store the start location and scan constants. if(next_scan) { next_scan->end_points[0] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)); next_scan->composite_amplitude = colour_burst_amplitude_; } // Advance time: that'll affect both the colour subcarrier position and the number of cycles left to run. phase_numerator_ += next_run_length * colour_cycle_numerator_; number_of_cycles -= next_run_length; cycles_since_horizontal_sync_ += next_run_length; // React to the incoming event. horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); // End the scan if necessary. if(next_scan) { next_scan->end_points[1] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)); scan_target_->end_scan(); } // Announce horizontal retrace events. if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) { // Reset the cycles-since-sync counter if this is the end of retrace. if(next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace) { cycles_since_horizontal_sync_ = 0; // This is unnecessary, strictly speaking, but seeks to help ScanTargets fit as // much as possible into a fixed range. phase_numerator_ %= phase_denominator_; if(!phase_numerator_) phase_numerator_ += phase_denominator_; } // Announce event. const auto event = (next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) ? Outputs::Display::ScanTarget::Event::BeginHorizontalRetrace : Outputs::Display::ScanTarget::Event::EndHorizontalRetrace; scan_target_->announce( event, !(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()), end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)), colour_burst_amplitude_); // If retrace is starting, update phase if required and mark no colour burst spotted yet. if(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) { is_alernate_line_ ^= phase_alternates_; colour_burst_amplitude_ = 0; } } // Also announce vertical retrace events. if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) { const auto event = (next_vertical_sync_event == Flywheel::SyncEvent::StartRetrace) ? Outputs::Display::ScanTarget::Event::BeginVerticalRetrace : Outputs::Display::ScanTarget::Event::EndVerticalRetrace; scan_target_->announce( event, !(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()), end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)), colour_burst_amplitude_); } // if this is vertical retrace then advance a field if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) { if(delegate_) { frames_since_last_delegate_call_++; if(frames_since_last_delegate_call_ == 20) { delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises()); frames_since_last_delegate_call_ = 0; } } } } if(did_output) { scan_target_->submit(); } } // MARK: - stream feeding methods void CRT::output_scan(const Scan *const scan) { assert(scan->number_of_cycles >= 0); // Simplified colour burst logic: if it's within the back porch we'll take it. if(scan->type == Scan::Type::ColourBurst) { if(!colour_burst_amplitude_ && horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6) { // Load phase_numerator_ as a fixed-point quantity in the range [0, 255]. phase_numerator_ = scan->phase; if(colour_burst_phase_adjustment_ != 0xff) phase_numerator_ = (phase_numerator_ & ~63) + colour_burst_phase_adjustment_; // Multiply the phase_numerator_ up to be to the proper scale. phase_numerator_ = (phase_numerator_ * phase_denominator_) >> 8; // Crib the colour burst amplitude. colour_burst_amplitude_ = scan->amplitude; } } // TODO: inspect raw data for potential colour burst if required; the DPLL and some zero crossing logic // will probably be sufficient but some test data would be helpful // sync logic: mark whether this is currently sync and check for a leading edge const bool this_is_sync = (scan->type == Scan::Type::Sync); const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync); is_receiving_sync_ = this_is_sync; // Horizontal sync is recognised on any leading edge that is not 'near' the expected vertical sync; // the second limb is to avoid slightly horizontal sync shifting from the common pattern of // equalisation pulses as the inverse of ordinary horizontal sync. bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync(); if(this_is_sync) { // If this is sync then either begin or continue a sync accumulation phase. is_accumulating_sync_ = true; cycles_since_sync_ = 0; } else { // If this is not sync then check how long it has been since sync. If it's more than // half a line then end sync accumulation and zero out the accumulating count. cycles_since_sync_ += scan->number_of_cycles; if(cycles_since_sync_ > (cycles_per_line_ >> 2)) { cycles_of_sync_ = 0; is_accumulating_sync_ = false; is_refusing_sync_ = false; } } int number_of_cycles = scan->number_of_cycles; bool vsync_requested = false; // If sync is being accumulated then accumulate it; if it crosses the vertical sync threshold then // divide this line at the crossing point and indicate vertical sync there. if(is_accumulating_sync_ && !is_refusing_sync_) { cycles_of_sync_ += scan->number_of_cycles; if(this_is_sync && cycles_of_sync_ >= sync_capacitor_charge_threshold_) { const int overshoot = std::min(cycles_of_sync_ - sync_capacitor_charge_threshold_, number_of_cycles); if(overshoot) { number_of_cycles -= overshoot; advance_cycles(number_of_cycles, hsync_requested, false, scan->type, 0); hsync_requested = false; number_of_cycles = overshoot; } is_refusing_sync_ = true; vsync_requested = true; } } advance_cycles(number_of_cycles, hsync_requested, vsync_requested, scan->type, scan->number_of_samples); } /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(int number_of_cycles) { Scan scan; scan.type = Scan::Type::Sync; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } void CRT::output_blank(int number_of_cycles) { Scan scan; scan.type = Scan::Type::Blank; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } void CRT::output_level(int number_of_cycles) { scan_target_->end_data(1); Scan scan; scan.type = Scan::Type::Level; scan.number_of_cycles = number_of_cycles; scan.number_of_samples = 1; output_scan(&scan); } void CRT::output_colour_burst(int number_of_cycles, uint8_t phase, uint8_t amplitude) { Scan scan; scan.type = Scan::Type::ColourBurst; scan.number_of_cycles = number_of_cycles; scan.phase = phase; scan.amplitude = amplitude >> 1; output_scan(&scan); } void CRT::output_default_colour_burst(int number_of_cycles, uint8_t amplitude) { // TODO: avoid applying a rounding error here? output_colour_burst(number_of_cycles, uint8_t((phase_numerator_ * 256) / phase_denominator_), amplitude); } void CRT::set_immediate_default_phase(float phase) { phase = fmodf(phase, 1.0f); phase_numerator_ = int(phase * float(phase_denominator_)); } void CRT::output_data(int number_of_cycles, size_t number_of_samples) { #ifndef NDEBUG assert(number_of_samples > 0 && number_of_samples <= allocated_data_length_); allocated_data_length_ = std::numeric_limits::min(); #endif scan_target_->end_data(number_of_samples); Scan scan; scan.type = Scan::Type::Data; scan.number_of_cycles = number_of_cycles; scan.number_of_samples = int(number_of_samples); output_scan(&scan); } // MARK: - Getters. Outputs::Display::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) const { first_cycle_after_sync *= time_multiplier_; number_of_cycles *= time_multiplier_; first_line_after_sync -= 2; number_of_lines += 4; // determine prima facie x extent const int horizontal_period = horizontal_flywheel_->get_standard_period(); const int horizontal_scan_period = horizontal_flywheel_->get_scan_period(); const int horizontal_retrace_period = horizontal_period - horizontal_scan_period; // make sure that the requested range is visible if(int(first_cycle_after_sync) < horizontal_retrace_period) first_cycle_after_sync = int(horizontal_retrace_period); if(int(first_cycle_after_sync + number_of_cycles) > horizontal_scan_period) number_of_cycles = int(horizontal_scan_period - int(first_cycle_after_sync)); float start_x = float(int(first_cycle_after_sync) - horizontal_retrace_period) / float(horizontal_scan_period); float width = float(number_of_cycles) / float(horizontal_scan_period); // determine prima facie y extent const int vertical_period = vertical_flywheel_->get_standard_period(); const int vertical_scan_period = vertical_flywheel_->get_scan_period(); const int vertical_retrace_period = vertical_period - vertical_scan_period; // make sure that the requested range is visible // if(int(first_line_after_sync) * horizontal_period < vertical_retrace_period) // first_line_after_sync = (vertical_retrace_period + horizontal_period - 1) / horizontal_period; // if((first_line_after_sync + number_of_lines) * horizontal_period > vertical_scan_period) // number_of_lines = int(horizontal_scan_period - int(first_cycle_after_sync)); float start_y = float((int(first_line_after_sync) * horizontal_period) - vertical_retrace_period) / float(vertical_scan_period); float height = float(int(number_of_lines) * horizontal_period) / vertical_scan_period; // adjust to ensure aspect ratio is correct const float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f); const float ideal_width = height * adjusted_aspect_ratio; if(ideal_width > width) { start_x -= (ideal_width - width) * 0.5f; width = ideal_width; } else { float ideal_height = width / adjusted_aspect_ratio; start_y -= (ideal_height - height) * 0.5f; height = ideal_height; } return Outputs::Display::Rect(start_x, start_y, width, height); } Outputs::Display::ScanStatus CRT::get_scaled_scan_status() const { Outputs::Display::ScanStatus status; status.field_duration = float(vertical_flywheel_->get_locked_period()) / float(time_multiplier_); status.field_duration_gradient = float(vertical_flywheel_->get_last_period_adjustment()) / float(time_multiplier_); status.retrace_duration = float(vertical_flywheel_->get_retrace_period()) / float(time_multiplier_); status.current_position = float(vertical_flywheel_->get_current_phase()) / float(vertical_flywheel_->get_locked_scan_period()); status.hsync_count = vertical_flywheel_->get_number_of_retraces(); return status; }