// // ScanTargetVertexArrayAttributs.cpp // Clock Signal // // Created by Thomas Harte on 11/11/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "ScanTarget.hpp" #include "../../SignalProcessing/FIRFilter.hpp" using namespace Outputs::Display::OpenGL; std::string ScanTarget::glsl_globals(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: return "#version 150\n" "uniform vec2 scale;" "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;" "uniform float rowHeight;" "uniform float processingWidth;" "in vec2 startPoint;" "in float startDataX;" "in float startCompositeAngle;" "in vec2 endPoint;" "in float endDataX;" "in float endCompositeAngle;" "in float dataY;" "in float lineY;" "in float compositeAmplitude;"; case ShaderType::Line: return "#version 150\n" "uniform vec2 scale;" "uniform float rowHeight;" "uniform float processingWidth;" "in vec2 startPoint;" "in vec2 endPoint;" "in float lineY;" "uniform sampler2D textureName;" "uniform vec2 origin;" "uniform vec2 size;"; } } std::vector ScanTarget::attribute_bindings(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: return { {"startPoint", 0}, {"startDataX", 1}, {"startCompositeAngle", 2}, {"endPoint", 3}, {"endDataX", 4}, {"endCompositeAngle", 5}, {"dataY", 6}, {"lineY", 7}, {"compositeAmplitude", 8}, }; case ShaderType::Line: return { {"startPoint", 0}, {"endPoint", 1}, {"lineY", 2}, }; } } std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: { std::string result; if(type == ShaderType::InputScan) { result += "out vec2 textureCoordinate;" "uniform usampler2D textureName;"; } else { result += "out vec2 textureCoordinates[11];" "uniform sampler2D textureName;"; } result += "out float compositeAngle;" "out float compositeAmplitudeOut;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;" "compositeAmplitudeOut = compositeAmplitude / 255.0;"; if(type == ShaderType::InputScan) { result += "textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY + 0.5) / textureSize(textureName, 0);" "vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);"; } else { result += "vec2 sourcePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + 0.5);" "vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);" "sourcePosition /= vec2(scale.x, 2048.0);" "textureCoordinates[0] = sourcePosition + vec2(-5.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[1] = sourcePosition + vec2(-4.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[2] = sourcePosition + vec2(-3.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[3] = sourcePosition + vec2(-2.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[4] = sourcePosition + vec2(-1.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[5] = sourcePosition;" "textureCoordinates[6] = sourcePosition + vec2(1.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[7] = sourcePosition + vec2(2.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[8] = sourcePosition + vec2(3.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[9] = sourcePosition + vec2(4.0, 0.0) / textureSize(textureName, 0);" "textureCoordinates[10] = sourcePosition + vec2(5.0, 0.0) / textureSize(textureName, 0);" "eyePosition = eyePosition;"; } return result + "gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);" "}"; } case ShaderType::Line: return "out vec2 textureCoordinate;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "textureCoordinate = vec2(lateral * processingWidth, lineY + 0.5) / vec2(1.0, textureSize(textureName, 0).y);" "vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;" "vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;" "vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);" "gl_Position = vec4(eyePosition, 0.0, 1.0);" "}"; } } void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) { switch(type) { case ShaderType::InputScan: case ShaderType::ProcessedScan: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].x)), 1); target.enable_vertex_attribute_with_pointer( prefix + "DataX", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].data_offset)), 1); target.enable_vertex_attribute_with_pointer( prefix + "CompositeAngle", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].composite_angle)), 1); } target.enable_vertex_attribute_with_pointer( "dataY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, data_y)), 1); target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, line)), 1); target.enable_vertex_attribute_with_pointer( "compositeAmplitude", 1, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.composite_amplitude)), 1); break; case ShaderType::Line: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, end_points[c].x)), 1); } target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, line)), 1); break; } } std::unique_ptr ScanTarget::input_shader(InputDataType input_data_type, DisplayType display_type) { std::string fragment_shader = "#version 150\n" "out vec3 fragColour;" "in vec2 textureCoordinate;" "in float compositeAngle;" "in float compositeAmplitudeOut;" "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;" "uniform usampler2D textureName;" "void main(void) {"; DisplayType computed_display_type; switch(input_data_type) { case InputDataType::Luminance1: computed_display_type = DisplayType::CompositeMonochrome; fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrr;"; break; case InputDataType::Luminance8: computed_display_type = DisplayType::CompositeMonochrome; fragment_shader += "fragColour = vec3(texture(textureName, textureCoordinate).r / 255.0);"; break; case InputDataType::Luminance8Phase8: computed_display_type = DisplayType::SVideo; fragment_shader += "vec2 yc = texture(textureName, textureCoordinate).rg / vec2(255.0);" "float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;" "float chroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);" "fragColour = vec3(yc.x, 0.5 + chroma*0.5, 0.0);"; break; case InputDataType::Red1Green1Blue1: computed_display_type = DisplayType::RGB; fragment_shader += "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = uvec3(textureValue) & uvec3(4u, 2u, 1u);"; break; case InputDataType::Red2Green2Blue2: computed_display_type = DisplayType::RGB; fragment_shader += "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0;"; break; case InputDataType::Red4Green4Blue4: computed_display_type = DisplayType::RGB; fragment_shader += "uvec2 textureValue = texture(textureName, textureCoordinate).rg;" "fragColour = vec3(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0);"; break; case InputDataType::Red8Green8Blue8: computed_display_type = DisplayType::RGB; fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);"; break; } if(computed_display_type != display_type) { // If the input type is RGB but the output type isn't then // there'll definitely be an RGB to SVideo step. if(computed_display_type == DisplayType::RGB) { fragment_shader += "vec3 composite_colour = rgbToLumaChroma * fragColour;" "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));" "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);"; } // If the output type is SVideo, throw in an attempt to separate the two chrominance // channels here; otherwise add an SVideo to composite step. if(display_type == DisplayType::SVideo) { if(computed_display_type != DisplayType::RGB) { fragment_shader += "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"; } fragment_shader += "fragColour = vec3(fragColour.x, ((fragColour.y - 0.5)*2.0) * quadrature);"; } else { fragment_shader += "fragColour = vec3(fragColour.r, 2.0*(fragColour.g - 0.5) * quadrature);"; } } return std::unique_ptr(new Shader( glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan), fragment_shader + "}", attribute_bindings(ShaderType::InputScan) )); } std::unique_ptr ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { /* Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that from the original to get chrominance. (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth), there'll be at least four samples per colour clock and in practice at most just a shade more than 9. */ const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); const SignalProcessing::FIRFilter filter(11, float(LineBufferWidth), 0.0f, cycles_per_expanded_line); const auto coefficients = filter.get_coefficients(); auto shader = std::unique_ptr(new Shader( glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan), "#version 150\n" "in vec2 textureCoordinates[11];" "uniform float textureWeights[11];" "uniform sampler2D textureName;" "uniform mat3 lumaChromaToRGB;" "out vec3 fragColour;" "void main() {" "vec4 weights[3] = vec4[3](" "vec4(textureWeights[0], textureWeights[1], textureWeights[2], textureWeights[3])," "vec4(textureWeights[4], textureWeights[5], textureWeights[6], textureWeights[7])," "vec4(textureWeights[8], textureWeights[9], textureWeights[10], 0.0)" ");" "vec3 samples[11] = vec3[11](" "texture(textureName, textureCoordinates[0]).rgb," "texture(textureName, textureCoordinates[1]).rgb," "texture(textureName, textureCoordinates[2]).rgb," "texture(textureName, textureCoordinates[3]).rgb," "texture(textureName, textureCoordinates[4]).rgb," "texture(textureName, textureCoordinates[5]).rgb," "texture(textureName, textureCoordinates[6]).rgb," "texture(textureName, textureCoordinates[7]).rgb," "texture(textureName, textureCoordinates[8]).rgb," "texture(textureName, textureCoordinates[9]).rgb," "texture(textureName, textureCoordinates[10]).rgb" ");" "vec4 samples1[3] = vec4[3](" "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," "vec4(samples[8].g, samples[9].g, samples[10].g, 0.0)" ");" "vec4 samples2[3] = vec4[3](" "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b)," "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b)," "vec4(samples[8].b, samples[9].b, samples[10].b, 0.0)" ");" "float channel1 = dot(weights[0], samples1[0]) + dot(weights[1], samples1[1]) + dot(weights[2], samples1[2]);" "float channel2 = dot(weights[0], samples2[0]) + dot(weights[1], samples2[1]) + dot(weights[2], samples2[2]);" "fragColour = lumaChromaToRGB * vec3(samples[5].x, channel1, samples[5].z);" "}", attribute_bindings(ShaderType::ProcessedScan) )); shader->set_uniform("textureWeights", GLint(sizeof(GLfloat)), GLsizei(coefficients.size()), coefficients.data()); return shader; } std::unique_ptr ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) { const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth)); const SignalProcessing::FIRFilter filter(11, float(LineBufferWidth), 0.0f, cycles_per_expanded_line * 0.5f); const auto coefficients = filter.get_coefficients(); return nullptr; }