// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include static const int bufferWidth = 512; static const int bufferHeight = 512; using namespace Outputs; CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...) { static const int syncCapacityLineChargeThreshold = 3; static const int millisecondsHorizontalRetraceTime = 16; static const int scanlinesVerticalRetraceTime = 26; // store fundamental display configuration properties _height_of_display = height_of_display; _cycles_per_line = cycles_per_line; // generate timing values implied by the given arbuments _hsync_error_window = cycles_per_line >> 5; _sync_capacitor_charge_threshold = syncCapacityLineChargeThreshold * cycles_per_line; _horizontal_retrace_time = (millisecondsHorizontalRetraceTime * cycles_per_line) >> 6; _vertical_retrace_time = scanlinesVerticalRetraceTime * cycles_per_line; _scanSpeed.x = 1.0f / (float)cycles_per_line; _scanSpeed.y = 1.0f / (float)height_of_display; _retraceSpeed.x = 1.0f / (float)_horizontal_retrace_time; _retraceSpeed.y = 1.0f / (float)_vertical_retrace_time; // generate buffers for signal storage as requested — format is // number of buffers, size of buffer 1, size of buffer 2... _numberOfBuffers = number_of_buffers; _bufferSizes = new int[_numberOfBuffers]; _buffers = new uint8_t *[_numberOfBuffers]; va_list va; va_start(va, number_of_buffers); for(int c = 0; c < _numberOfBuffers; c++) { _bufferSizes[c] = va_arg(va, int); _buffers[c] = new uint8_t[bufferHeight * bufferWidth * _bufferSizes[c]]; } va_end(va); // reset pointer into output buffers _write_allocation_pointer = 0; // reset the run buffer pointer _run_pointer = 0; // reset raster position _rasterPosition.x = _rasterPosition.y = 0.0f; // reset flywheel sync _expected_next_hsync = cycles_per_line; _horizontal_counter = 0; // reset the vertical charge capacitor _sync_capacitor_charge_level = 0; // start off not in horizontal sync, not receiving a sync signal _is_receiving_sync = false; _is_in_hsync = false; _vretrace_counter = 0; } CRT::~CRT() { delete[] _bufferSizes; for(int c = 0; c < _numberOfBuffers; c++) { delete[] _buffers[c]; } delete[] _buffers; } #pragma mark - Sync loop CRT::SyncEvent CRT::advance_to_next_sync_event(bool hsync_is_requested, bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced) { // do we recognise this hsync, thereby adjusting time expectations? if ((_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) && hsync_is_requested) { _did_detect_hsync = true; int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter; _expected_next_hsync = (_expected_next_hsync + time_now) >> 1; // printf("to %d for %d\n", _expected_next_hsync, time_now); } SyncEvent proposedEvent = SyncEvent::None; int proposedSyncTime = cycles_to_run_for; // have we overrun the maximum permitted number of horizontal syncs for this frame? if (!_vretrace_counter) { float raster_distance = _scanSpeed.y * (float)proposedSyncTime; if(_rasterPosition.y < 1.02f && _rasterPosition.y + raster_distance >= 1.02f) { proposedSyncTime = (int)(1.02f - _rasterPosition.y) / _scanSpeed.y; proposedEvent = SyncEvent::StartVSync; } } // will we end an ongoing hsync? if (_horizontal_counter < _horizontal_retrace_time && _horizontal_counter+proposedSyncTime >= _horizontal_retrace_time) { proposedSyncTime = _horizontal_retrace_time - _horizontal_counter; proposedEvent = SyncEvent::EndHSync; } // will we start an hsync? if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) { proposedSyncTime = _expected_next_hsync - _horizontal_counter; proposedEvent = SyncEvent::StartHSync; } // will an acceptable vertical sync be triggered? if (vsync_is_charging && !_vretrace_counter) { if (_sync_capacitor_charge_level < _sync_capacitor_charge_threshold && _sync_capacitor_charge_level + proposedSyncTime >= _sync_capacitor_charge_threshold) { proposedSyncTime = _sync_capacitor_charge_threshold - _sync_capacitor_charge_level; proposedEvent = SyncEvent::StartVSync; } } // will an ongoing vertical sync end? if (_vretrace_counter > 0) { if (_vretrace_counter < proposedSyncTime) { proposedSyncTime = _vretrace_counter; proposedEvent = SyncEvent::EndVSync; } } *cycles_advanced = proposedSyncTime; return proposedEvent; } void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const CRTRun::Type type, const char *data_type) { // this is safe to keep locally because it accumulates over this run of cycles only int buffer_offset = 0; while(number_of_cycles) { // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) int next_run_length; SyncEvent next_event = advance_to_next_sync_event(hsync_requested, vsync_charging, number_of_cycles, &next_run_length); hsync_requested = false; // get a run from the allocated list, allocating more if we're about to overrun if(_run_pointer >= _all_runs.size()) { _all_runs.resize((_all_runs.size() * 2)+1); } CRTRun *nextRun = &_all_runs[_run_pointer]; _run_pointer++; // set the type, initial raster position and type of this run nextRun->type = type; nextRun->start_point.dst_x = _rasterPosition.x; nextRun->start_point.dst_y = _rasterPosition.y; nextRun->data_type = data_type; // if this is a data or level run then store a starting data position if(type == CRTRun::Type::Data || type == CRTRun::Type::Level) { nextRun->start_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1); nextRun->start_point.src_y = (_write_target_pointer + buffer_offset) / bufferWidth; } // advance the raster position as dictated by current sync status if (_is_in_hsync) _rasterPosition.x = std::max(0.0f, _rasterPosition.x - (float)number_of_cycles * _retraceSpeed.x); else _rasterPosition.x = std::min(1.0f, _rasterPosition.x + (float)number_of_cycles * _scanSpeed.x); if (_vretrace_counter > 0) _rasterPosition.y = std::max(0.0f, _rasterPosition.y - (float)number_of_cycles * _retraceSpeed.y); else _rasterPosition.y = std::min(1.0f, _rasterPosition.y + (float)number_of_cycles * _scanSpeed.y); // store the final raster position nextRun->end_point.dst_x = _rasterPosition.x; nextRun->end_point.dst_y = _rasterPosition.y; // if this is a data run then advance the buffer pointer if(type == CRTRun::Type::Data) { buffer_offset += next_run_length; } // if this is a data or level run then store the end point if(type == CRTRun::Type::Data || type == CRTRun::Type::Level) { nextRun->end_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1); nextRun->end_point.src_y = (_write_target_pointer + buffer_offset) / bufferWidth; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; _horizontal_counter += next_run_length; // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if (vsync_charging) _sync_capacitor_charge_level += next_run_length; else _sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0); // decrement the vertical retrace counter, making sure it stops at 0 _vretrace_counter = std::max(_vretrace_counter - next_run_length, 0); // react to the incoming event... switch(next_event) { // start of hsync: zero the scanline counter, note that we're now in // horizontal sync, increment the lines-in-this-frame counter case SyncEvent::StartHSync: _horizontal_counter = 0; _is_in_hsync = true; break; // end of horizontal sync: update the flywheel's velocity, note that we're no longer // in horizontal sync case SyncEvent::EndHSync: if (!_did_detect_hsync) { _expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1; } _did_detect_hsync = false; _is_in_hsync = false; break; // start of vertical sync: reset the lines-in-this-frame counter, // load the retrace counter with the amount of time it'll take to retrace case SyncEvent::StartVSync: _vretrace_counter = _vertical_retrace_time; break; // end of vertical sync: tell the delegate that we finished vertical sync, // releasing all runs back into the common pool case SyncEvent::EndVSync: if(_delegate != nullptr) _delegate->crt_did_start_vertical_retrace_with_runs(&_all_runs[0], _run_pointer); _run_pointer = 0; break; default: break; } } } #pragma mark - delegate void CRT::set_delegate(CRTDelegate *delegate) { _delegate = delegate; } #pragma mark - stream feeding methods /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(int number_of_cycles) { bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice _is_receiving_sync = true; advance_cycles(number_of_cycles, _hsync_requested, true, CRTRun::Type::Sync, nullptr); } void CRT::output_blank(int number_of_cycles) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, CRTRun::Type::Blank, nullptr); } void CRT::output_level(int number_of_cycles, const char *type) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, CRTRun::Type::Level, type); } void CRT::output_data(int number_of_cycles, const char *type) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, CRTRun::Type::Data, type); } #pragma mark - Buffer supply void CRT::allocate_write_area(int required_length) { int xPos = _write_allocation_pointer & (bufferWidth - 1); if (xPos + required_length > bufferWidth) { _write_allocation_pointer &= ~(bufferWidth - 1); _write_allocation_pointer = (_write_allocation_pointer + bufferWidth) & ((bufferHeight-1) * bufferWidth); } _write_target_pointer = _write_allocation_pointer; _write_allocation_pointer += required_length; } uint8_t *CRT::get_write_target_for_buffer(int buffer) { return &_buffers[buffer][_write_target_pointer * _bufferSizes[buffer]]; }