// // Atari2600.cpp // CLK // // Created by Thomas Harte on 14/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "Atari2600.hpp" #include #include using namespace Atari2600; namespace { static const unsigned int horizontalTimerPeriod = 228; static const double NTSC_clock_rate = 1194720; static const double PAL_clock_rate = 1182298; } Machine::Machine() : _horizontalTimer(0), _lastOutputStateDuration(0), _lastOutputState(OutputState::Sync), _rom(nullptr), _tiaInputValue{0xff, 0xff}, _upcomingEventsPointer(0), _objectCounterPointer(0), _stateByTime(_stateByExtendTime[0]), _cycles_since_speaker_update(0), _is_pal_region(false) { memset(_collisions, 0xff, sizeof(_collisions)); setup_reported_collisions(); for(int vbextend = 0; vbextend < 2; vbextend++) { for(int c = 0; c < 57; c++) { OutputState state; // determine which output state will be active in four cycles from now switch(c) { case 0: case 1: case 2: case 3: state = OutputState::Blank; break; case 4: case 5: case 6: case 7: state = OutputState::Sync; break; case 8: case 9: case 10: case 11: state = OutputState::ColourBurst; break; case 12: case 13: case 14: case 15: case 16: state = OutputState::Blank; break; case 17: case 18: state = vbextend ? OutputState::Blank : OutputState::Pixel; break; default: state = OutputState::Pixel; break; } _stateByExtendTime[vbextend][c] = state; } } set_clock_rate(NTSC_clock_rate); } void Machine::setup_output(float aspect_ratio) { _speaker.reset(new Speaker); _crt.reset(new Outputs::CRT::CRT(228, 1, 263, Outputs::CRT::ColourSpace::YIQ, 228, 1, 1)); _crt->set_output_device(Outputs::CRT::Television); // this is the NTSC phase offset function; see below for PAL _crt->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "float phaseOffset = 6.283185308 * float(iPhase - 1u) / 13.0;" "return mix(float(y) / 14.0, step(1, iPhase) * cos(phase + phaseOffset), amplitude);" "}"); _speaker->set_input_rate((float)(get_clock_rate() / 38.0)); } void Machine::switch_region() { // the PAL function _crt->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "uint direction = iPhase & 1u;" "float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);" "phaseOffset *= 6.283185308 / 12.0;" "return mix(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset), amplitude);" "}"); _crt->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1); _is_pal_region = true; _speaker->set_input_rate((float)(get_clock_rate() / 38.0)); set_clock_rate(PAL_clock_rate); } void Machine::close_output() { _crt = nullptr; } Machine::~Machine() { delete[] _rom; close_output(); } void Machine::update_timers(int mask) { unsigned int upcomingPointerPlus4 = (_upcomingEventsPointer + 4)%number_of_upcoming_events; _objectCounterPointer = (_objectCounterPointer + 1)%number_of_recorded_counters; ObjectCounter *oneClockAgo = _objectCounter[(_objectCounterPointer - 1 + number_of_recorded_counters)%number_of_recorded_counters]; ObjectCounter *twoClocksAgo = _objectCounter[(_objectCounterPointer - 2 + number_of_recorded_counters)%number_of_recorded_counters]; ObjectCounter *now = _objectCounter[_objectCounterPointer]; // grab the background now, for application in four clocks if(mask & (1 << 5) && !(_horizontalTimer&3)) { unsigned int offset = 4 + _horizontalTimer - (horizontalTimerPeriod - 160); _upcomingEvents[upcomingPointerPlus4].updates |= Event::Action::Playfield; _upcomingEvents[upcomingPointerPlus4].playfieldPixel = _playfield[(offset >> 2)%40]; } if(mask & (1 << 4)) { // the ball becomes visible whenever it hits zero, regardless of whether its status // is the result of a counter rollover or a programmatic reset, and there's a four // clock delay on that triggering the start signal now[4].count = (oneClockAgo[4].count + 1)%160; now[4].pixel = oneClockAgo[4].pixel + 1; if(!now[4].count) now[4].pixel = 0; } else { now[4] = oneClockAgo[4]; } // check for player and missle triggers for(int c = 0; c < 4; c++) { if(mask & (1 << c)) { // update the count now[c].count = (oneClockAgo[c].count + 1)%160; uint8_t repeatMask = _playerAndMissileSize[c&1] & 7; ObjectCounter *rollover; ObjectCounter *equality; if(c < 2) { // update the pixel now[c].broad_pixel = oneClockAgo[c].broad_pixel + 1; switch(repeatMask) { default: now[c].pixel = oneClockAgo[c].pixel + 1; break; case 5: now[c].pixel = oneClockAgo[c].pixel + (now[c].broad_pixel&1); break; case 7: now[c].pixel = oneClockAgo[c].pixel + (((now[c].broad_pixel | (now[c].broad_pixel >> 1))^1)&1); break; } // check for a rollover six clocks ago or equality five clocks ago rollover = twoClocksAgo; equality = oneClockAgo; } else { // update the pixel now[c].pixel = oneClockAgo[c].pixel + 1; // check for a rollover five clocks ago or equality four clocks ago rollover = oneClockAgo; equality = now; } if( (rollover[c].count == 159) || (_hasSecondCopy[c&1] && equality[c].count == 16) || (_hasThirdCopy[c&1] && equality[c].count == 32) || (_hasFourthCopy[c&1] && equality[c].count == 64) ) { now[c].pixel = 0; now[c].broad_pixel = 0; } } else { now[c] = oneClockAgo[c]; } } } uint8_t Machine::get_output_pixel() { ObjectCounter *now = _objectCounter[_objectCounterPointer]; // get the playfield pixel unsigned int offset = _horizontalTimer - (horizontalTimerPeriod - 160); uint8_t playfieldColour = ((_playfieldControl&6) == 2) ? _playerColour[offset / 80] : _playfieldColour; // ball pixel uint8_t ballPixel = 0; if(now[4].pixel < _ballSize) { ballPixel = _ballGraphicsEnable[_ballGraphicsSelector]; } // determine the player and missile pixels uint8_t playerPixels[2] = { 0, 0 }; uint8_t missilePixels[2] = { 0, 0 }; for(int c = 0; c < 2; c++) { if(_playerGraphics[c] && now[c].pixel < 8) { playerPixels[c] = (_playerGraphics[_playerGraphicsSelector[c]][c] >> (now[c].pixel ^ _playerReflectionMask[c])) & 1; } if(!_missileGraphicsReset[c] && now[c+2].pixel < _missileSize[c]) { missilePixels[c] = _missileGraphicsEnable[c]; } } // accumulate collisions int pixel_mask = playerPixels[0] | (playerPixels[1] << 1) | (missilePixels[0] << 2) | (missilePixels[1] << 3) | (ballPixel << 4) | (_playfieldOutput << 5); _collisions[0] |= _reportedCollisions[pixel_mask][0]; _collisions[1] |= _reportedCollisions[pixel_mask][1]; _collisions[2] |= _reportedCollisions[pixel_mask][2]; _collisions[3] |= _reportedCollisions[pixel_mask][3]; _collisions[4] |= _reportedCollisions[pixel_mask][4]; _collisions[5] |= _reportedCollisions[pixel_mask][5]; _collisions[6] |= _reportedCollisions[pixel_mask][6]; _collisions[7] |= _reportedCollisions[pixel_mask][7]; // apply appropriate priority to pick a colour uint8_t playfieldPixel = _playfieldOutput | ballPixel; uint8_t outputColour = playfieldPixel ? playfieldColour : _backgroundColour; if(!(_playfieldControl&0x04) || !playfieldPixel) { if(playerPixels[1] || missilePixels[1]) outputColour = _playerColour[1]; if(playerPixels[0] || missilePixels[0]) outputColour = _playerColour[0]; } // return colour return outputColour; } void Machine::setup_reported_collisions() { for(int c = 0; c < 64; c++) { memset(_reportedCollisions[c], 0, 8); int playerPixels[2] = { c&1, (c >> 1)&1 }; int missilePixels[2] = { (c >> 2)&1, (c >> 3)&1 }; int ballPixel = (c >> 4)&1; int playfieldPixel = (c >> 5)&1; if(playerPixels[0] | playerPixels[1]) { _reportedCollisions[c][0] |= ((missilePixels[0] & playerPixels[1]) << 7) | ((missilePixels[0] & playerPixels[0]) << 6); _reportedCollisions[c][1] |= ((missilePixels[1] & playerPixels[0]) << 7) | ((missilePixels[1] & playerPixels[1]) << 6); _reportedCollisions[c][2] |= ((playfieldPixel & playerPixels[0]) << 7) | ((ballPixel & playerPixels[0]) << 6); _reportedCollisions[c][3] |= ((playfieldPixel & playerPixels[1]) << 7) | ((ballPixel & playerPixels[1]) << 6); _reportedCollisions[c][7] |= ((playerPixels[0] & playerPixels[1]) << 7); } if(playfieldPixel | ballPixel) { _reportedCollisions[c][4] |= ((playfieldPixel & missilePixels[0]) << 7) | ((ballPixel & missilePixels[0]) << 6); _reportedCollisions[c][5] |= ((playfieldPixel & missilePixels[1]) << 7) | ((ballPixel & missilePixels[1]) << 6); _reportedCollisions[c][6] |= ((playfieldPixel & ballPixel) << 7); } if(missilePixels[0] & missilePixels[1]) _reportedCollisions[c][7] |= (1 << 6); } } void Machine::output_pixels(unsigned int count) { while(count--) { if(_upcomingEvents[_upcomingEventsPointer].updates) { // apply any queued changes and flush the record if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::HMoveSetup) { // schedule an extended left border _stateByTime = _stateByExtendTime[1]; // clear any ongoing moves if(_hMoveFlags) { for(int c = 0; c < number_of_upcoming_events; c++) { _upcomingEvents[c].updates &= ~(Event::Action::HMoveCompare | Event::Action::HMoveDecrement); } } // schedule new moves _hMoveFlags = 0x1f; _hMoveCounter = 15; // follow-through into a compare immediately _upcomingEvents[_upcomingEventsPointer].updates |= Event::Action::HMoveCompare; } if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::HMoveCompare) { for(int c = 0; c < 5; c++) { if(((_objectMotion[c] >> 4)^_hMoveCounter) == 7) { _hMoveFlags &= ~(1 << c); } } if(_hMoveFlags) { if(_hMoveCounter) _hMoveCounter--; _upcomingEvents[(_upcomingEventsPointer+4)%number_of_upcoming_events].updates |= Event::Action::HMoveCompare; _upcomingEvents[(_upcomingEventsPointer+2)%number_of_upcoming_events].updates |= Event::Action::HMoveDecrement; } } if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::HMoveDecrement) { update_timers(_hMoveFlags); } if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::ResetCounter) { _objectCounter[_objectCounterPointer][_upcomingEvents[_upcomingEventsPointer].counter].count = 0; } // zero out current update event _upcomingEvents[_upcomingEventsPointer].updates = 0; } // progress to next event _upcomingEventsPointer = (_upcomingEventsPointer + 1)%number_of_upcoming_events; // determine which output state is currently active OutputState primary_state = _stateByTime[_horizontalTimer >> 2]; OutputState effective_state = primary_state; // update pixel timers if(primary_state == OutputState::Pixel) update_timers(~0); // update the background chain if(_horizontalTimer >= 64 && _horizontalTimer <= 160+64 && !(_horizontalTimer&3)) { _playfieldOutput = _nextPlayfieldOutput; _nextPlayfieldOutput = _playfield[(_horizontalTimer - 64) >> 2]; } // if vsync is enabled, output the opposite of the automatic hsync output; // also honour the vertical blank flag if(_vSyncEnabled) { effective_state = (effective_state = OutputState::Sync) ? OutputState::Blank : OutputState::Sync; } else if(_vBlankEnabled && effective_state == OutputState::Pixel) { effective_state = OutputState::Blank; } // decide what that means needs to be communicated to the CRT _lastOutputStateDuration++; if(effective_state != _lastOutputState) { switch(_lastOutputState) { case OutputState::Blank: _crt->output_blank(_lastOutputStateDuration); break; case OutputState::Sync: _crt->output_sync(_lastOutputStateDuration); break; case OutputState::ColourBurst: _crt->output_colour_burst(_lastOutputStateDuration, 96, 0); break; case OutputState::Pixel: _crt->output_data(_lastOutputStateDuration, 1); break; } _lastOutputStateDuration = 0; _lastOutputState = effective_state; if(effective_state == OutputState::Pixel) { _outputBuffer = _crt->allocate_write_area(160); } else { _outputBuffer = nullptr; } } // decide on a pixel colour if that's what's happening if(effective_state == OutputState::Pixel) { uint8_t colour = get_output_pixel(); if(_outputBuffer) { *_outputBuffer = colour; _outputBuffer++; } } // advance horizontal timer, perform reset actions if desired _horizontalTimer = (_horizontalTimer + 1) % horizontalTimerPeriod; if(!_horizontalTimer) { // switch back to a normal length left border _stateByTime = _stateByExtendTime[0]; set_ready_line(false); } } } unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { uint8_t returnValue = 0xff; unsigned int cycles_run_for = 3; // this occurs as a feedback loop — the 2600 requests ready, then performs the cycles_run_for // leap to the end of ready only once ready is signalled — because on a 6502 ready doesn't take // effect until the next read; therefore it isn't safe to assume that signalling ready immediately // skips to the end of the line. if(operation == CPU6502::BusOperation::Ready) { unsigned int distance_to_end_of_ready = horizontalTimerPeriod - _horizontalTimer; cycles_run_for = distance_to_end_of_ready; } output_pixels(cycles_run_for); _cycles_since_speaker_update += cycles_run_for; if(operation != CPU6502::BusOperation::Ready) { // check for a paging access if(_rom_size > 4096 && ((address & 0x1f00) == 0x1f00)) { uint8_t *base_ptr = _romPages[0]; uint8_t first_paging_register = (uint8_t)(0xf8 - (_rom_size >> 14)*2); const uint8_t paging_register = address&0xff; if(paging_register >= first_paging_register) { const uint16_t selected_page = paging_register - first_paging_register; if(selected_page * 4096 < _rom_size) { base_ptr = &_rom[selected_page * 4096]; } } if(base_ptr != _romPages[0]) { _romPages[0] = base_ptr; _romPages[1] = base_ptr + 1024; _romPages[2] = base_ptr + 2048; _romPages[3] = base_ptr + 3072; } } // check for a ROM read if((address&0x1000) && isReadOperation(operation)) { returnValue &= _romPages[(address >> 10)&3][address&1023]; } // check for a RAM access if((address&0x1280) == 0x80) { if(isReadOperation(operation)) { returnValue &= _mos6532.get_ram(address); } else { _mos6532.set_ram(address, *value); } } // check for a TIA access if(!(address&0x1080)) { if(isReadOperation(operation)) { const uint16_t decodedAddress = address & 0xf; switch(decodedAddress) { case 0x00: // missile 0 / player collisions case 0x01: // missile 1 / player collisions case 0x02: // player 0 / playfield / ball collisions case 0x03: // player 1 / playfield / ball collisions case 0x04: // missile 0 / playfield / ball collisions case 0x05: // missile 1 / playfield / ball collisions case 0x06: // ball / playfield collisions case 0x07: // player / player, missile / missile collisions returnValue &= _collisions[decodedAddress]; break; case 0x08: case 0x09: case 0x0a: case 0x0b: // TODO: pot ports break; case 0x0c: case 0x0d: returnValue &= _tiaInputValue[decodedAddress - 0x0c]; break; } } else { const uint16_t decodedAddress = address & 0x3f; switch(decodedAddress) { case 0x00: _vSyncEnabled = !!(*value & 0x02); break; case 0x01: _vBlankEnabled = !!(*value & 0x02); break; case 0x02: if(_horizontalTimer) set_ready_line(true); break; case 0x03: // Reset is delayed by four cycles. _horizontalTimer = horizontalTimerPeriod - 4; // TODO: audio will now be out of synchronisation — fix break; case 0x04: case 0x05: { int entry = decodedAddress - 0x04; _playerAndMissileSize[entry] = *value; _missileSize[entry] = 1 << ((*value >> 4)&3); uint8_t repeatMask = (*value)&7; _hasSecondCopy[entry] = (repeatMask == 1) || (repeatMask == 3); _hasThirdCopy[entry] = (repeatMask == 2) || (repeatMask == 3) || (repeatMask == 6); _hasFourthCopy[entry] = (repeatMask == 4) || (repeatMask == 6); } break; case 0x06: case 0x07: _playerColour[decodedAddress - 0x06] = *value; break; case 0x08: _playfieldColour = *value; break; case 0x09: _backgroundColour = *value; break; case 0x0a: { uint8_t old_playfield_control = _playfieldControl; _playfieldControl = *value; _ballSize = 1 << ((_playfieldControl >> 4)&3); // did the mirroring bit change? if((_playfieldControl^old_playfield_control)&1) { if(_playfieldControl&1) { for(int c = 0; c < 20; c++) _playfield[c+20] = _playfield[19-c]; } else { memcpy(&_playfield[20], _playfield, 20); } } } break; case 0x0b: case 0x0c: _playerReflectionMask[decodedAddress - 0x0b] = (*value)&8 ? 0 : 7; break; case 0x0d: _playfield[0] = ((*value) >> 4)&1; _playfield[1] = ((*value) >> 5)&1; _playfield[2] = ((*value) >> 6)&1; _playfield[3] = (*value) >> 7; if(_playfieldControl&1) { for(int c = 0; c < 4; c++) _playfield[39-c] = _playfield[c]; } else { memcpy(&_playfield[20], _playfield, 4); } break; case 0x0e: _playfield[4] = (*value) >> 7; _playfield[5] = ((*value) >> 6)&1; _playfield[6] = ((*value) >> 5)&1; _playfield[7] = ((*value) >> 4)&1; _playfield[8] = ((*value) >> 3)&1; _playfield[9] = ((*value) >> 2)&1; _playfield[10] = ((*value) >> 1)&1; _playfield[11] = (*value)&1; if(_playfieldControl&1) { for(int c = 0; c < 8; c++) _playfield[35-c] = _playfield[c+4]; } else { memcpy(&_playfield[24], &_playfield[4], 8); } break; case 0x0f: _playfield[19] = (*value) >> 7; _playfield[18] = ((*value) >> 6)&1; _playfield[17] = ((*value) >> 5)&1; _playfield[16] = ((*value) >> 4)&1; _playfield[15] = ((*value) >> 3)&1; _playfield[14] = ((*value) >> 2)&1; _playfield[13] = ((*value) >> 1)&1; _playfield[12] = (*value)&1; if(_playfieldControl&1) { for(int c = 0; c < 8; c++) _playfield[27-c] = _playfield[c+12]; } else { memcpy(&_playfield[32], &_playfield[12], 8); } break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: _upcomingEvents[(_upcomingEventsPointer + 4)%number_of_upcoming_events].updates |= Event::Action::ResetCounter; _upcomingEvents[(_upcomingEventsPointer + 4)%number_of_upcoming_events].counter = decodedAddress - 0x10; break; case 0x15: case 0x16: update_audio(); _speaker->set_control(decodedAddress - 0x15, *value); break; case 0x17: case 0x18: update_audio(); _speaker->set_divider(decodedAddress - 0x17, *value); break; case 0x19: case 0x1a: update_audio(); _speaker->set_volume(decodedAddress - 0x19, *value); break; case 0x1c: _ballGraphicsEnable[1] = _ballGraphicsEnable[0]; case 0x1b: { int index = decodedAddress - 0x1b; _playerGraphics[0][index] = *value; _playerGraphics[1][index^1] = _playerGraphics[0][index^1]; } break; case 0x1d: case 0x1e: _missileGraphicsEnable[decodedAddress - 0x1d] = ((*value) >> 1)&1; // printf("e:%02x <- %c\n", decodedAddress - 0x1d, ((*value)&1) ? 'E' : '-'); break; case 0x1f: _ballGraphicsEnable[0] = ((*value) >> 1)&1; break; case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: _objectMotion[decodedAddress - 0x20] = *value; break; case 0x25: _playerGraphicsSelector[0] = (*value)&1; break; case 0x26: _playerGraphicsSelector[1] = (*value)&1; break; case 0x27: _ballGraphicsSelector = (*value)&1; break; case 0x28: case 0x29: { // TODO: this should properly mean setting a flag and propagating later, I think? int index = decodedAddress - 0x28; if(!(*value&0x02) && _missileGraphicsReset[index]) { _objectCounter[_objectCounterPointer][index + 2].count = _objectCounter[_objectCounterPointer][index].count; uint8_t repeatMask = _playerAndMissileSize[index] & 7; int extra_offset; switch(repeatMask) { default: extra_offset = 3; break; case 5: extra_offset = 6; break; case 7: extra_offset = 10; break; } _objectCounter[_objectCounterPointer][index + 2].count = (_objectCounter[_objectCounterPointer][index + 2].count + extra_offset)%160; } _missileGraphicsReset[index] = !!((*value) & 0x02); // printf("r:%02x <- %c\n", decodedAddress - 0x28, ((*value)&2) ? 'R' : '-'); } break; case 0x2a: { // justification for +5: "we need to wait at least 71 [clocks] before the HMOVE operation is complete"; // which will take 16*4 + 2 = 66 cycles from the first compare, implying the first compare must be // in five cycles from now // int start_pause = ((_horizontalTimer + 3)&3) + 4; _upcomingEvents[(_upcomingEventsPointer + 5)%number_of_upcoming_events].updates |= Event::Action::HMoveSetup; } break; case 0x2b: _objectMotion[0] = _objectMotion[1] = _objectMotion[2] = _objectMotion[3] = _objectMotion[4] = 0; break; case 0x2c: _collisions[0] = _collisions[1] = _collisions[2] = _collisions[3] = _collisions[4] = _collisions[5] = 0x3f; _collisions[6] = 0x7f; _collisions[7] = 0x3f; break; } } } // check for a PIA access if((address&0x1280) == 0x280) { if(isReadOperation(operation)) { returnValue &= _mos6532.get_register(address); } else { _mos6532.set_register(address, *value); } } if(isReadOperation(operation)) { *value = returnValue; } } _mos6532.run_for_cycles(cycles_run_for / 3); return cycles_run_for / 3; } void Machine::set_digital_input(Atari2600DigitalInput input, bool state) { switch (input) { case Atari2600DigitalInputJoy1Up: _mos6532.update_port_input(0, 0x10, state); break; case Atari2600DigitalInputJoy1Down: _mos6532.update_port_input(0, 0x20, state); break; case Atari2600DigitalInputJoy1Left: _mos6532.update_port_input(0, 0x40, state); break; case Atari2600DigitalInputJoy1Right: _mos6532.update_port_input(0, 0x80, state); break; case Atari2600DigitalInputJoy2Up: _mos6532.update_port_input(0, 0x01, state); break; case Atari2600DigitalInputJoy2Down: _mos6532.update_port_input(0, 0x02, state); break; case Atari2600DigitalInputJoy2Left: _mos6532.update_port_input(0, 0x04, state); break; case Atari2600DigitalInputJoy2Right: _mos6532.update_port_input(0, 0x08, state); break; // TODO: latching case Atari2600DigitalInputJoy1Fire: if(state) _tiaInputValue[0] &= ~0x80; else _tiaInputValue[0] |= 0x80; break; case Atari2600DigitalInputJoy2Fire: if(state) _tiaInputValue[1] &= ~0x80; else _tiaInputValue[1] |= 0x80; break; default: break; } } void Machine::set_switch_is_enabled(Atari2600Switch input, bool state) { switch(input) { case Atari2600SwitchReset: _mos6532.update_port_input(1, 0x01, state); break; case Atari2600SwitchSelect: _mos6532.update_port_input(1, 0x02, state); break; case Atari2600SwitchColour: _mos6532.update_port_input(1, 0x08, state); break; case Atari2600SwitchLeftPlayerDifficulty: _mos6532.update_port_input(1, 0x40, state); break; case Atari2600SwitchRightPlayerDifficulty: _mos6532.update_port_input(1, 0x80, state); break; } } void Machine::configure_as_target(const StaticAnalyser::Target &target) { if(!target.cartridges.front()->get_segments().size()) return; Storage::Cartridge::Cartridge::Segment segment = target.cartridges.front()->get_segments().front(); size_t length = segment.data.size(); _rom_size = 1024; while(_rom_size < length && _rom_size < 32768) _rom_size <<= 1; delete[] _rom; _rom = new uint8_t[_rom_size]; size_t offset = 0; const size_t copy_step = std::min(_rom_size, length); while(offset < _rom_size) { size_t copy_length = std::min(copy_step, _rom_size - offset); memcpy(&_rom[offset], &segment.data[0], copy_length); offset += copy_length; } size_t romMask = _rom_size - 1; _romPages[0] = _rom; _romPages[1] = &_rom[1024 & romMask]; _romPages[2] = &_rom[2048 & romMask]; _romPages[3] = &_rom[3072 & romMask]; } #pragma mark - Audio void Machine::update_audio() { unsigned int audio_cycles = _cycles_since_speaker_update / 114; // static unsigned int total_cycles = 0; // total_cycles += audio_cycles; // static time_t logged_time = 0; // time_t time_now = time(nullptr); // if(time_now - logged_time > 0) // { // printf("[s] %ld : %d\n", time_now - logged_time, total_cycles); // total_cycles = 0; // logged_time = time_now; // } _speaker->run_for_cycles(audio_cycles); _cycles_since_speaker_update %= 114; } void Machine::synchronise() { update_audio(); } Atari2600::Speaker::Speaker() { _poly4_counter[0] = _poly4_counter[1] = 0x00f; _poly5_counter[0] = _poly5_counter[1] = 0x01f; _poly9_counter[0] = _poly9_counter[1] = 0x1ff; } Atari2600::Speaker::~Speaker() { } void Atari2600::Speaker::set_volume(int channel, uint8_t volume) { enqueue([=]() { _volume[channel] = volume & 0xf; }); } void Atari2600::Speaker::set_divider(int channel, uint8_t divider) { enqueue([=]() { _divider[channel] = divider & 0x1f; _divider_counter[channel] = 0; }); } void Atari2600::Speaker::set_control(int channel, uint8_t control) { enqueue([=]() { _control[channel] = control & 0xf; }); } #define advance_poly4(c) _poly4_counter[channel] = (_poly4_counter[channel] >> 1) | (((_poly4_counter[channel] << 3) ^ (_poly4_counter[channel] << 2))&0x008) #define advance_poly5(c) _poly5_counter[channel] = (_poly5_counter[channel] >> 1) | (((_poly5_counter[channel] << 4) ^ (_poly5_counter[channel] << 2))&0x010) #define advance_poly9(c) _poly9_counter[channel] = (_poly9_counter[channel] >> 1) | (((_poly9_counter[channel] << 4) ^ (_poly9_counter[channel] << 8))&0x100) void Atari2600::Speaker::get_samples(unsigned int number_of_samples, int16_t *target) { for(unsigned int c = 0; c < number_of_samples; c++) { target[c] = 0; for(int channel = 0; channel < 2; channel++) { _divider_counter[channel] ++; int level = 0; switch(_control[channel]) { case 0x0: case 0xb: // constant 1 level = 1; break; case 0x4: case 0x5: // div2 tone level = (_divider_counter[channel] / (_divider[channel]+1))&1; break; case 0xc: case 0xd: // div6 tone level = (_divider_counter[channel] / ((_divider[channel]+1)*3))&1; break; case 0x6: case 0xa: // div31 tone level = (_divider_counter[channel] / (_divider[channel]+1))%30 <= 18; break; case 0xe: // div93 tone level = (_divider_counter[channel] / ((_divider[channel]+1)*3))%30 <= 18; break; case 0x1: // 4-bit poly level = _poly4_counter[channel]&1; if(_divider_counter[channel] == _divider[channel]+1) { _divider_counter[channel] = 0; advance_poly4(channel); } break; case 0x2: // 4-bit poly div31 level = _poly4_counter[channel]&1; if(_divider_counter[channel]%(30*(_divider[channel]+1)) == 18) { advance_poly4(channel); } break; case 0x3: // 5/4-bit poly level = _output_state[channel]; if(_divider_counter[channel] == _divider[channel]+1) { if(_poly5_counter[channel]&1) { _output_state[channel] = _poly4_counter[channel]&1; advance_poly4(channel); } advance_poly5(channel); } break; case 0x7: case 0x9: // 5-bit poly level = _poly5_counter[channel]&1; if(_divider_counter[channel] == _divider[channel]+1) { _divider_counter[channel] = 0; advance_poly5(channel); } break; case 0xf: // 5-bit poly div6 level = _poly5_counter[channel]&1; if(_divider_counter[channel] == (_divider[channel]+1)*3) { _divider_counter[channel] = 0; advance_poly5(channel); } break; case 0x8: // 9-bit poly level = _poly9_counter[channel]&1; if(_divider_counter[channel] == _divider[channel]+1) { _divider_counter[channel] = 0; advance_poly9(channel); } break; } target[c] += _volume[channel] * 1024 * level; } } }