// // Implementation.hpp // Clock Signal // // Created by Thomas Harte on 04/09/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "../../../Outputs/Log.hpp" // As-yet unimplemented (incomplete list): // // PB6 count-down mode for timer 2. namespace MOS::MOS6522 { template void MOS6522::access(const int address) { switch(address) { case 0x0: // In both handshake and pulse modes, CB2 goes low on any read or write of Port B. if(handshake_modes_[1] != HandshakeMode::None) { set_control_line_output(Port::B, Line::Two, LineState::Off); } break; case 0xf: case 0x1: // In both handshake and pulse modes, CA2 goes low on any read or write of Port A. if(handshake_modes_[0] != HandshakeMode::None) { set_control_line_output(Port::A, Line::Two, LineState::Off); } break; } } template void MOS6522::write(int address, const uint8_t value) { address &= 0xf; access(address); switch(address) { case 0x0: // Write Port B. ('ORB') // Store locally and communicate outwards. registers_.output[1] = value; bus_handler_.run_for(time_since_bus_handler_call_.flush()); evaluate_port_b_output(); registers_.interrupt_flags &= ~( InterruptFlag::CB1ActiveEdge | ((registers_.peripheral_control&0x20) ? 0 : InterruptFlag::CB2ActiveEdge) ); reevaluate_interrupts(); break; case 0xf: case 0x1: // Write Port A. ('ORA') registers_.output[0] = value; bus_handler_.run_for(time_since_bus_handler_call_.flush()); bus_handler_.set_port_output(Port::A, value, registers_.data_direction[0]); if(handshake_modes_[1] != HandshakeMode::None) { set_control_line_output(Port::A, Line::Two, LineState::Off); } registers_.interrupt_flags &= ~( InterruptFlag::CA1ActiveEdge | ((registers_.peripheral_control&0x02) ? 0 : InterruptFlag::CB2ActiveEdge) ); reevaluate_interrupts(); break; case 0x2: // Port B direction ('DDRB'). registers_.data_direction[1] = value; break; case 0x3: // Port A direction ('DDRA'). registers_.data_direction[0] = value; break; // Timer 1 case 0x6: case 0x4: // ('T1L-L' and 'T1C-L') registers_.timer_latch[0] = (registers_.timer_latch[0]&0xff00) | value; break; case 0x7: // Timer 1 latch, high ('T1L-H'). registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8); break; case 0x5: // Timer 1 counter, high ('T1C-H'). // Fill latch. registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8); // Restart timer. registers_.next_timer[0] = registers_.timer_latch[0]; timer_is_running_[0] = true; // If PB7 output mode is active, set it low. if(timer1_is_controlling_pb7()) { registers_.timer_port_b_output &= 0x7f; evaluate_port_b_output(); } // Clear existing interrupt flag. registers_.interrupt_flags &= ~InterruptFlag::Timer1; reevaluate_interrupts(); break; // Timer 2 case 0x8: // ('T2C-L') registers_.timer_latch[1] = value; break; case 0x9: // ('T2C-H') registers_.interrupt_flags &= ~InterruptFlag::Timer2; registers_.next_timer[1] = registers_.timer_latch[1] | uint16_t(value << 8); timer_is_running_[1] = true; reevaluate_interrupts(); break; // Shift case 0xa: // ('SR') registers_.shift = value; shift_bits_remaining_ = 8; registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister; reevaluate_interrupts(); break; // Control case 0xb: // Auxiliary control ('ACR'). registers_.auxiliary_control = value; evaluate_cb2_output(); // This is a bit of a guess: reset the timer-based PB7 output to its default high level // any timer that timer-linked PB7 output is disabled. if(!timer1_is_controlling_pb7()) { registers_.timer_port_b_output |= 0x80; } evaluate_port_b_output(); break; case 0xc: { // Peripheral control ('PCR'). // const auto old_peripheral_control = registers_.peripheral_control; registers_.peripheral_control = value; int shift = 0; for(int port = 0; port < 2; ++port) { handshake_modes_[port] = HandshakeMode::None; switch((value >> shift) & 0x0e) { default: break; case 0x00: // Negative interrupt input; set Cx2 interrupt on negative Cx2 transition, clear on access to Port x register. case 0x02: // Independent negative interrupt input; set Cx2 interrupt on negative transition, don't clear automatically. case 0x04: // Positive interrupt input; set Cx2 interrupt on positive Cx2 transition, clear on access to Port x register. case 0x06: // Independent positive interrupt input; set Cx2 interrupt on positive transition, don't clear automatically. set_control_line_output(Port(port), Line::Two, LineState::Input); break; case 0x08: // Handshake: set Cx2 to low on any read or write of Port x; set to high on an active transition of Cx1. handshake_modes_[port] = HandshakeMode::Handshake; set_control_line_output(Port(port), Line::Two, LineState::Off); // At a guess. break; case 0x0a: // Pulse output: Cx2 is low for one cycle following a read or write of Port x. handshake_modes_[port] = HandshakeMode::Pulse; set_control_line_output(Port(port), Line::Two, LineState::On); break; case 0x0c: // Manual output: Cx2 low. set_control_line_output(Port(port), Line::Two, LineState::Off); break; case 0x0e: // Manual output: Cx2 high. set_control_line_output(Port(port), Line::Two, LineState::On); break; } shift += 4; } } break; // Interrupt control case 0xd: // Interrupt flag regiser ('IFR'). registers_.interrupt_flags &= ~value; reevaluate_interrupts(); break; case 0xe: // Interrupt enable register ('IER'). if(value&0x80) registers_.interrupt_enable |= value; else registers_.interrupt_enable &= ~value; reevaluate_interrupts(); break; } } template uint8_t MOS6522::read(int address) { address &= 0xf; access(address); switch(address) { case 0x0: // Read Port B ('IRB'). registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge); reevaluate_interrupts(); return get_port_input(Port::B, registers_.data_direction[1], registers_.output[1], registers_.auxiliary_control & 0x80); case 0xf: case 0x1: // Read Port A ('IRA'). registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge); reevaluate_interrupts(); return get_port_input(Port::A, registers_.data_direction[0], registers_.output[0], 0); case 0x2: return registers_.data_direction[1]; // Port B direction ('DDRB'). case 0x3: return registers_.data_direction[0]; // Port A direction ('DDRA'). // Timer 1 case 0x4: // Timer 1 low-order latches ('T1L-L'). registers_.interrupt_flags &= ~InterruptFlag::Timer1; reevaluate_interrupts(); return registers_.timer[0] & 0x00ff; case 0x5: return registers_.timer[0] >> 8; // Timer 1 high-order counter ('T1C-H') case 0x6: return registers_.timer_latch[0] & 0x00ff; // Timer 1 low-order latches ('T1L-L'). case 0x7: return registers_.timer_latch[0] >> 8; // Timer 1 high-order latches ('T1L-H'). // Timer 2 case 0x8: // Timer 2 low-order counter ('T2C-L'). registers_.interrupt_flags &= ~InterruptFlag::Timer2; reevaluate_interrupts(); return registers_.timer[1] & 0x00ff; case 0x9: return registers_.timer[1] >> 8; // Timer 2 high-order counter ('T2C-H'). case 0xa: // Shift register ('SR'). shift_bits_remaining_ = 8; registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister; reevaluate_interrupts(); return registers_.shift; case 0xb: return registers_.auxiliary_control; // Auxiliary control ('ACR'). case 0xc: return registers_.peripheral_control; // Peripheral control ('PCR'). case 0xd: return registers_.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00); // Interrupt flag register ('IFR'). case 0xe: return registers_.interrupt_enable | 0x80; // Interrupt enable register ('IER'). } return 0xff; } template uint8_t MOS6522::get_port_input( const Port port, const uint8_t output_mask, uint8_t output, const uint8_t timer_mask ) { bus_handler_.run_for(time_since_bus_handler_call_.flush()); const uint8_t input = bus_handler_.get_port_input(port); output = (output & ~timer_mask) | (registers_.timer_port_b_output & timer_mask); return (input & ~output_mask) | (output & output_mask); } template T &MOS6522::bus_handler() { return bus_handler_; } // Delegate and communications template void MOS6522::reevaluate_interrupts() { bool new_interrupt_status = get_interrupt_line(); if(new_interrupt_status != last_posted_interrupt_status_) { last_posted_interrupt_status_ = new_interrupt_status; bus_handler_.run_for(time_since_bus_handler_call_.flush()); bus_handler_.set_interrupt_status(new_interrupt_status); } } template void MOS6522::set_control_line_input(const Port port, const Line line, const bool value) { switch(line) { case Line::One: if(value != control_inputs_[port].lines[line]) { // In handshake mode, any transition on C[A/B]1 sets output high on C[A/B]2. if(handshake_modes_[port] == HandshakeMode::Handshake) { set_control_line_output(port, Line::Two, LineState::On); } // Set the proper transition interrupt bit if enabled. if(value == !!(registers_.peripheral_control & (port ? 0x10 : 0x01))) { registers_.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge; reevaluate_interrupts(); } // If this is a transition on CB1, consider updating the shift register. // TODO: and at least one full clock since the shift register was written? if(port == Port::B) { switch(shift_mode()) { default: break; case ShiftMode::InUnderCB1: if(value) shift_in(); break; // Shifts in are captured on a low-to-high transition. case ShiftMode::OutUnderCB1: if(!value) shift_out(); break; // Shifts out are updated on a high-to-low transition. } } } control_inputs_[port].lines[line] = value; break; case Line::Two: if( value != control_inputs_[port].lines[line] && // i.e. value has changed ... !(registers_.peripheral_control & (port ? 0x80 : 0x08)) && // ... and line is input ... value == !!(registers_.peripheral_control & (port ? 0x40 : 0x04)) // ... and it's either high or low, as required ) { registers_.interrupt_flags |= port ? InterruptFlag::CB2ActiveEdge : InterruptFlag::CA2ActiveEdge; reevaluate_interrupts(); } control_inputs_[port].lines[line] = value; break; } } template void MOS6522::do_phase2() { ++ time_since_bus_handler_call_; registers_.last_timer[0] = registers_.timer[0]; registers_.last_timer[1] = registers_.timer[1]; if(registers_.timer_needs_reload) { registers_.timer_needs_reload = false; registers_.timer[0] = registers_.timer_latch[0]; } else { -- registers_.timer[0]; } // Count down timer 2 if it is in timed interrupt mode (i.e. auxiliary control bit 5 is clear). registers_.timer[1] -= timer2_clock_decrement(); // TODO: can eliminate conditional branches here. if(registers_.next_timer[0] >= 0) { registers_.timer[0] = uint16_t(registers_.next_timer[0]); registers_.next_timer[0] = -1; } if(registers_.next_timer[1] >= 0) { registers_.timer[1] = uint16_t(registers_.next_timer[1]); registers_.next_timer[1] = -1; } // In pulse modes, CA2 and CB2 go high again on the next clock edge. if(handshake_modes_[1] == HandshakeMode::Pulse) { set_control_line_output(Port::B, Line::Two, LineState::On); } if(handshake_modes_[0] == HandshakeMode::Pulse) { set_control_line_output(Port::A, Line::Two, LineState::On); } // If the shift register is shifting according to the input clock, do a shift. switch(shift_mode()) { default: break; case ShiftMode::InUnderPhase2: shift_in(); break; case ShiftMode::OutUnderPhase2: shift_out(); break; } } template void MOS6522::do_phase1() { ++ time_since_bus_handler_call_; // IRQ is raised on the half cycle after overflow if((registers_.timer[1] == 0xffff) && !registers_.last_timer[1] && timer_is_running_[1]) { timer_is_running_[1] = false; // If the shift register is shifting according to this timer, do a shift. // TODO: "shift register is driven by only the low order 8 bits of timer 2"? switch(shift_mode()) { default: break; case ShiftMode::InUnderT2: shift_in(); break; case ShiftMode::OutUnderT2FreeRunning: shift_out(); break; case ShiftMode::OutUnderT2: shift_out(); break; // TODO: present a clock on CB1. } registers_.interrupt_flags |= InterruptFlag::Timer2; reevaluate_interrupts(); } if((registers_.timer[0] == 0xffff) && !registers_.last_timer[0] && timer_is_running_[0]) { registers_.interrupt_flags |= InterruptFlag::Timer1; reevaluate_interrupts(); // Determine whether to reload. if(timer1_is_continuous()) registers_.timer_needs_reload = true; else timer_is_running_[0] = false; // Determine whether to toggle PB7. if(timer1_is_controlling_pb7()) { registers_.timer_port_b_output ^= 0x80; bus_handler_.run_for(time_since_bus_handler_call_.flush()); evaluate_port_b_output(); } } } template void MOS6522::evaluate_port_b_output() { // Apply current timer-linked PB7 output if any atop the stated output. const uint8_t timer_control_bit = registers_.auxiliary_control & 0x80; bus_handler_.set_port_output( Port::B, (registers_.output[1] & (0xff ^ timer_control_bit)) | timer_control_bit, registers_.data_direction[1] | timer_control_bit); } /*! Runs for a specified number of half cycles. */ template void MOS6522::run_for(const HalfCycles half_cycles) { auto number_of_half_cycles = half_cycles.as_integral(); if(!number_of_half_cycles) return; if(is_phase2_) { do_phase2(); number_of_half_cycles--; } while(number_of_half_cycles >= 2) { do_phase1(); do_phase2(); number_of_half_cycles -= 2; } if(number_of_half_cycles) { do_phase1(); is_phase2_ = true; } else { is_phase2_ = false; } } template void MOS6522::flush() { bus_handler_.run_for(time_since_bus_handler_call_.flush()); bus_handler_.flush(); } /*! Runs for a specified number of cycles. */ template void MOS6522::run_for(const Cycles cycles) { auto number_of_cycles = cycles.as_integral(); while(number_of_cycles--) { do_phase1(); do_phase2(); } } /*! @returns @c true if the IRQ line is currently active; @c false otherwise. */ template bool MOS6522::get_interrupt_line() const { uint8_t interrupt_status = registers_.interrupt_flags & registers_.interrupt_enable & 0x7f; return interrupt_status; } template void MOS6522::evaluate_cb2_output() { // CB2 is a special case, being both the line the shift register can output to, // and one that can be used as an input or handshaking output according to the // peripheral control register. // My guess: other CB2 functions work only if the shift register is disabled (?). if(shift_mode() != ShiftMode::Disabled) { // Shift register is enabled, one way or the other; but announce only output. if(is_shifting_out()) { // Output mode; set the level according to the current top of the shift register. bus_handler_.set_control_line_output(Port::B, Line::Two, !!(registers_.shift & 0x80)); } else { // Input mode. bus_handler_.set_control_line_output(Port::B, Line::Two, true); } } else { // Shift register is disabled. bus_handler_.set_control_line_output(Port::B, Line::Two, control_outputs_[1].lines[1] != LineState::Off); } } template void MOS6522::set_control_line_output(const Port port, const Line line, const LineState value) { if(port == Port::B && line == Line::Two) { control_outputs_[port].lines[line] = value; evaluate_cb2_output(); } else { // Do nothing if unchanged. if(value == control_outputs_[port].lines[line]) { return; } control_outputs_[port].lines[line] = value; if(value != LineState::Input) { bus_handler_.run_for(time_since_bus_handler_call_.flush()); bus_handler_.set_control_line_output(port, line, value != LineState::Off); } } } template void MOS6522::shift_in() { registers_.shift = uint8_t((registers_.shift << 1) | (control_inputs_[1].lines[1] ? 1 : 0)); --shift_bits_remaining_; if(!shift_bits_remaining_) { registers_.interrupt_flags |= InterruptFlag::ShiftRegister; reevaluate_interrupts(); } } template void MOS6522::shift_out() { const bool is_free_running = shift_mode() == ShiftMode::OutUnderT2FreeRunning; if(is_free_running || shift_bits_remaining_) { // Recirculate bits only if in free-running mode (?) const uint8_t incoming_bit = (registers_.shift >> 7) * is_free_running; registers_.shift = uint8_t(registers_.shift << 1) | incoming_bit; evaluate_cb2_output(); --shift_bits_remaining_; if(!shift_bits_remaining_) { registers_.interrupt_flags |= InterruptFlag::ShiftRegister; reevaluate_interrupts(); } } } }