// // AmstradCPC.cpp // Clock Signal // // Created by Thomas Harte on 30/07/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "AmstradCPC.hpp" #include "../../Processors/Z80/Z80.hpp" #include "../../Components/8255/i8255.hpp" #include "../../Components/AY38910/AY38910.hpp" #include "../../Components/6845/CRTC6845.hpp" using namespace AmstradCPC; class CRTCBusHandler { public: CRTCBusHandler(uint8_t *ram) : cycles_(0), was_enabled_(false), was_sync_(false), pixel_data_(nullptr), pixel_pointer_(nullptr), was_hsync_(false), ram_(ram), interrupt_counter_(0), interrupt_request_(false) {} inline void perform_bus_cycle(const Motorola::CRTC::BusState &state) { bool is_sync = state.hsync || state.vsync; // if a transition between sync/border/pixels just occurred, announce it if(state.display_enable != was_enabled_ || is_sync != was_sync_) { if(was_sync_) { crt_->output_sync(cycles_ * 16); } else { if(was_enabled_) { if(cycles_) { crt_->output_data(cycles_ * 16, pixel_divider_); pixel_pointer_ = pixel_data_ = nullptr; } } else { uint8_t *colour_pointer = (uint8_t *)crt_->allocate_write_area(1); if(colour_pointer) *colour_pointer = border_; crt_->output_level(cycles_ * 16); } } cycles_ = 0; was_sync_ = is_sync; was_enabled_ = state.display_enable; } // increment cycles since state changed cycles_++; // collect some more pixels if output is ongoing if(!is_sync && state.display_enable) { if(!pixel_data_) { pixel_pointer_ = pixel_data_ = crt_->allocate_write_area(320); } if(pixel_pointer_) { // the CPC shuffles output lines as: // MA13 MA12 RA2 RA1 RA0 MA9 MA8 MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0 CCLK uint16_t address = (uint16_t)( ((state.refresh_address & 0x3ff) << 1) | ((state.row_address & 0x7) << 11) | ((state.refresh_address & 0x3000) << 2) ); switch(mode_) { case 0: ((uint16_t *)pixel_pointer_)[0] = mode0_output_[ram_[address]]; ((uint16_t *)pixel_pointer_)[1] = mode0_output_[ram_[address+1]]; pixel_pointer_ += 4; break; case 1: ((uint32_t *)pixel_pointer_)[0] = mode1_output_[ram_[address]]; ((uint32_t *)pixel_pointer_)[1] = mode1_output_[ram_[address+1]]; pixel_pointer_ += 8; break; case 2: ((uint64_t *)pixel_pointer_)[0] = mode2_output_[ram_[address]]; ((uint64_t *)pixel_pointer_)[1] = mode2_output_[ram_[address+1]]; pixel_pointer_ += 16; break; case 3: ((uint32_t *)pixel_pointer_)[0] = mode3_output_[ram_[address]]; ((uint32_t *)pixel_pointer_)[1] = mode3_output_[ram_[address+1]]; pixel_pointer_ += 8; break; } // flush the current buffer if full if(pixel_pointer_ == pixel_data_ + 320) { crt_->output_data(cycles_ * 16, pixel_divider_); pixel_pointer_ = pixel_data_ = nullptr; cycles_ = 0; } } } // check for a trailing hsync if(was_hsync_ && !state.hsync) { if(mode_ != next_mode_) { mode_ = next_mode_; switch(mode_) { default: case 0: pixel_divider_ = 4; break; case 1: pixel_divider_ = 2; break; case 2: pixel_divider_ = 1; break; } } interrupt_counter_++; if(interrupt_counter_ == 52) { interrupt_request_ = true; interrupt_counter_ = false; } if(interrupt_reset_counter_) { interrupt_reset_counter_--; if(!interrupt_reset_counter_) { if(interrupt_counter_ < 32) { interrupt_request_ = true; } interrupt_counter_ = 0; } } } if(!was_vsync_ && state.vsync) { interrupt_reset_counter_ = 2; } was_vsync_ = state.vsync; was_hsync_ = state.hsync; } bool get_interrupt_request() { return interrupt_request_; } void reset_interrupt_request() { interrupt_request_ = false; interrupt_counter_ &= ~32; } void setup_output(float aspect_ratio) { crt_.reset(new Outputs::CRT::CRT(1024, 16, Outputs::CRT::DisplayType::PAL50, 1)); crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "uint sample = texture(texID, coordinate).r;" "return vec3(float(sample & 3u), float((sample >> 2) & 3u), float((sample >> 4) & 3u)) / 3.0;" "}"); // TODO: better vectorise the above. } void close_output() { crt_.reset(); } std::shared_ptr get_crt() { return crt_; } void set_next_mode(int mode) { next_mode_ = mode; } void select_pen(int pen) { pen_ = pen; } void set_colour(uint8_t colour) { if(pen_ & 16) { // printf("border: %d -> %02x\n", colour, mapped_palette_value(colour)); border_ = mapped_palette_value(colour); // TODO: should flush any border currently in progress } else { palette_[pen_] = mapped_palette_value(colour); // for(int c = 0; c < 16; c++) { // printf("%02x ", palette_[c]); // } // printf("\n"); // TODO: no need for a full regeneration, of every mode, every time for(int c = 0; c < 256; c++) { // prepare mode 0 // uint8_t *pixels = (uint8_t *)&mode0_output_[c]; // pixels[0] = palette_[((c & 0x80) >> 4) | ((c & 0x08) >> 3)]; // pixels[1] = palette_[((c & 0x40) >> 5) | ((c & 0x04) >> 2)]; // prepare mode 1 uint8_t *pixels = (uint8_t *)&mode1_output_[c]; pixels[0] = palette_[((c & 0x80) >> 6) | ((c & 0x08) >> 3)]; pixels[1] = palette_[((c & 0x40) >> 5) | ((c & 0x04) >> 2)]; pixels[2] = palette_[((c & 0x20) >> 4) | ((c & 0x02) >> 1)]; pixels[3] = palette_[((c & 0x10) >> 3) | ((c & 0x01) >> 0)]; // mode2_output_[c] = 0xffffff; } } } void reset_interrupt_counter() { interrupt_counter_ = 0; } private: uint8_t mapped_palette_value(uint8_t colour) { uint8_t r = (colour / 3) % 3; uint8_t g = (colour / 9) % 3; uint8_t b = colour % 3; return (uint8_t)(r | (g << 2) | (b << 4)); } unsigned int cycles_; bool was_enabled_, was_sync_, was_hsync_, was_vsync_; std::shared_ptr crt_; uint8_t *pixel_data_, *pixel_pointer_; uint8_t *ram_; int next_mode_, mode_; unsigned int pixel_divider_; uint16_t mode0_output_[256]; uint32_t mode1_output_[256]; uint64_t mode2_output_[256]; uint32_t mode3_output_[256]; int pen_; uint8_t palette_[16]; uint8_t border_; int interrupt_counter_; bool interrupt_request_; int interrupt_reset_counter_; }; struct KeyboardState { KeyboardState() : rows{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} {} uint8_t rows[10]; }; class i8255PortHandler : public Intel::i8255::PortHandler { public: i8255PortHandler(const KeyboardState &key_state) : key_state_(key_state) {} void set_value(int port, uint8_t value) { switch(port) { case 0: ay_->set_data_input(value); break; case 1: printf("Vsync, etc: %02x\n", value); break; case 2: { // TODO: the AY really should allow port communications to be active. Work needed. int key_row = value & 15; if(key_row < 10) { ay_->set_port_input(false, key_state_.rows[key_row]); } else { ay_->set_port_input(false, 0xff); } // TODO: set casette motor control: ((value >> 4) & 1) // TODO: set casette output: ((value >> 5) & 1) ay_->set_control_lines( (GI::AY38910::ControlLines)( ((value & 0x80) ? GI::AY38910::BDIR : 0) | ((value & 0x40) ? GI::AY38910::BC1 : 0) | GI::AY38910::BC2 )); } break; } } uint8_t get_value(int port) { switch(port) { case 0: return ay_->get_data_output(); case 1: printf("[In] Vsync, etc\n"); break; case 2: printf("[In] Key row, etc\n"); break; } return 0xff; } void set_ay(std::shared_ptr ay) { ay_ = ay; } private: std::shared_ptr ay_; const KeyboardState &key_state_; }; class ConcreteMachine: public CPU::Z80::Processor, public Machine { public: ConcreteMachine() : crtc_counter_(HalfCycles(4)), // This starts the CRTC exactly out of phase with the memory accesses crtc_(crtc_bus_handler_), crtc_bus_handler_(ram_), i8255_(i8255_port_handler_), i8255_port_handler_(key_state_) { // primary clock is 4Mhz set_clock_rate(4000000); } inline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { // Amstrad CPC timing scheme: assert WAIT for three out of four cycles clock_offset_ = (clock_offset_ + cycle.length) & HalfCycles(7); set_wait_line(clock_offset_ >= HalfCycles(2)); // Update the CRTC once every eight half cycles; aiming for half-cycle 4 as // per the initial seed to the crtc_counter_, but any time in the final four // will do as it's safe to conclude that nobody else has touched video RAM // during that whole window crtc_counter_ += cycle.length; int crtc_cycles = crtc_counter_.divide(HalfCycles(8)).as_int(); if(crtc_cycles) crtc_.run_for(Cycles(1)); set_interrupt_line(crtc_bus_handler_.get_interrupt_request()); // Stop now if no action is strictly required. if(!cycle.is_terminal()) return HalfCycles(0); uint16_t address = cycle.address ? *cycle.address : 0x0000; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::ReadOpcode: case CPU::Z80::PartialMachineCycle::Read: *cycle.value = read_pointers_[address >> 14][address & 16383]; break; case CPU::Z80::PartialMachineCycle::Write: write_pointers_[address >> 14][address & 16383] = *cycle.value; break; case CPU::Z80::PartialMachineCycle::Output: // Check for a gate array access. if((address & 0xc000) == 0x4000) { switch(*cycle.value >> 6) { case 0: crtc_bus_handler_.select_pen(*cycle.value & 0x1f); break; case 1: crtc_bus_handler_.set_colour(*cycle.value & 0x1f); break; case 2: read_pointers_[0] = (*cycle.value & 4) ? &ram_[0] : os_.data(); read_pointers_[3] = (*cycle.value & 8) ? &ram_[49152] : basic_.data(); if(*cycle.value & 15) crtc_bus_handler_.reset_interrupt_counter(); crtc_bus_handler_.set_next_mode(*cycle.value & 3); break; case 3: printf("RAM paging?\n"); break; } } // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: crtc_.select_register(*cycle.value); break; case 1: crtc_.set_register(*cycle.value); break; case 2: case 3: printf("Illegal CRTC write?\n"); break; } } // Check for a PIO access if(!(address & 0x800)) { i8255_.set_register((address >> 8) & 3, *cycle.value); } break; case CPU::Z80::PartialMachineCycle::Input: *cycle.value = 0xff; // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: case 1: printf("Illegal CRTC read?\n"); break; case 2: *cycle.value = crtc_.get_status(); break; case 3: *cycle.value = crtc_.get_register(); break; } } // Check for a PIO access if(!(address & 0x800)) { *cycle.value = i8255_.get_register((address >> 8) & 3); } break; case CPU::Z80::PartialMachineCycle::Interrupt: *cycle.value = 0xff; crtc_bus_handler_.reset_interrupt_request(); break; default: break; } return HalfCycles(0); } void flush() { // i8255_port_handler_.flush(); } void setup_output(float aspect_ratio) { crtc_bus_handler_.setup_output(aspect_ratio); ay_.reset(new GI::AY38910); i8255_port_handler_.set_ay(ay_); } void close_output() { crtc_bus_handler_.close_output(); ay_.reset(); } std::shared_ptr get_crt() { return crtc_bus_handler_.get_crt(); } std::shared_ptr get_speaker() { return ay_; } void run_for(const Cycles cycles) { CPU::Z80::Processor::run_for(cycles); } void configure_as_target(const StaticAnalyser::Target &target) { // Establish reset memory map as per machine model (or, for now, as a hard-wired 464) read_pointers_[0] = os_.data(); read_pointers_[1] = &ram_[16384]; read_pointers_[2] = &ram_[32768]; read_pointers_[3] = basic_.data(); write_pointers_[0] = &ram_[0]; write_pointers_[1] = &ram_[16384]; write_pointers_[2] = &ram_[32768]; write_pointers_[3] = &ram_[49152]; } void set_rom(ROMType type, std::vector data) { // Keep only the two ROMs that are currently of interest. switch(type) { case ROMType::OS464: os_ = data; break; case ROMType::BASIC464: basic_ = data; break; default: break; } } void set_key_state(uint16_t key, bool isPressed) { if(isPressed) key_state_.rows[key >> 4] &= ~(key&7); else key_state_.rows[key >> 4] |= (key&7); } void clear_all_keys() { memset(key_state_.rows, 0xff, 10); } private: CRTCBusHandler crtc_bus_handler_; Motorola::CRTC::CRTC6845 crtc_; std::shared_ptr ay_; i8255PortHandler i8255_port_handler_; Intel::i8255::i8255 i8255_; HalfCycles clock_offset_; HalfCycles crtc_counter_; HalfCycles half_cycles_since_ay_update_; uint8_t ram_[65536]; std::vector os_, basic_; uint8_t *read_pointers_[4]; uint8_t *write_pointers_[4]; KeyboardState key_state_; }; Machine *Machine::AmstradCPC() { return new ConcreteMachine; }