// // Atari2600.cpp // CLK // // Created by Thomas Harte on 14/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "Atari2600.hpp" #include #include using namespace Atari2600; static const char atari2600DataType[] = "Atari2600"; static const int horizontalTimerReload = 227; Machine::Machine() { _timestamp = 0; _horizontalTimer = horizontalTimerReload; _lastOutputStateDuration = 0; _lastOutputState = OutputState::Sync; _crt = new Outputs::CRT(228, 262, 1, 4); _piaTimerStatus = 0xff; setup6502(); } Machine::~Machine() { delete _crt; } void Machine::switch_region() { _crt->set_new_timing(228, 312); } void Machine::get_output_pixel(uint8_t *pixel, int offset) { const uint8_t palette[16][3] = { {255, 255, 255}, {253, 250, 115}, {236, 199, 125}, {252, 187, 151}, {252, 180, 181}, {235, 177, 223}, {211, 178, 250}, {187, 182, 250}, {164, 186, 250}, {166, 201, 250}, {164, 224, 251}, {165, 251, 213}, {185, 251, 187}, {201, 250, 168}, {225, 235, 160}, {252, 223, 145} }; const uint8_t alphaValues[8] = { // 0, 64, 108, 144, 176, 200, 220, 255 // }; // // { 69, 134, 108, 161, 186, 210, 235, 255 }; // get the playfield pixel and hence a proposed colour const int x = offset >> 2; const int mirrored = (x / 20) & (_playfieldControl&1); const int index = mirrored ? x - 20 : 19 - (x%20); const int byte = 2 - (index >> 3); const int lowestBit = (byte&1)^1; const int bit = (index & 7)^(lowestBit | (lowestBit << 1) | (lowestBit << 2)); uint8_t playfieldPixel = (_playfield[byte] >> bit)&1; uint8_t playfieldColour = ((_playfieldControl&6) == 2) ? _playerColour[x / 20] : _playfieldColour; // get player and missile proposed pixels uint8_t playerPixels[2], missilePixels[2]; for(int c = 0; c < 2; c++) { // figure out player colour int flipMask = (_playerReflection[c]&0x8) ? 0 : 7; int relativeTimer = _playerCounter[c] - 5;//_playerPosition[c] - _horizontalTimer; switch (_playerAndMissileSize[c]&7) { case 0: break; case 1: if (relativeTimer >= 16) relativeTimer -= 16; break; case 2: if (relativeTimer >= 32) relativeTimer -= 32; break; case 3: if (relativeTimer >= 32) relativeTimer -= 32; else if (relativeTimer >= 16) relativeTimer -= 16; break; case 4: if (relativeTimer >= 64) relativeTimer -= 64; break; case 5: relativeTimer >>= 1; break; case 6: if (relativeTimer >= 64) relativeTimer -= 64; else if (relativeTimer >= 32) relativeTimer -= 32; break; case 7: relativeTimer >>= 2; break; } if(relativeTimer >= 0 && relativeTimer < 8) playerPixels[c] = (_playerGraphics[c] >> (relativeTimer ^ flipMask)) &1; else playerPixels[c] = 0; // figure out missile colour int missileIndex = _missileCounter[c] - 4; int missileSize = 1 << ((_playerAndMissileSize[c] >> 4)&3); missilePixels[c] = (missileIndex >= 0 && missileIndex < missileSize && (_missileGraphicsEnable[c]&2)) ? 1 : 0; } // get the ball proposed colour uint8_t ballPixel; int ballIndex = _ballCounter - 4; int ballSize = 1 << ((_playfieldControl >> 4)&3); ballPixel = (ballIndex >= 0 && ballIndex < ballSize && (_ballGraphicsEnable&2)) ? 1 : 0; // apply appropriate priority to pick a colour playfieldPixel |= ballPixel; uint8_t outputColour = playfieldPixel ? playfieldColour : _backgroundColour; if(!(_playfieldControl&0x04) || !playfieldPixel) { if (playerPixels[1] || missilePixels[1]) outputColour = _playerColour[1]; if (playerPixels[0] || missilePixels[0]) outputColour = _playerColour[0]; } // map that colour to an RGBA pixel[0] = palette[outputColour >> 4][0]; pixel[1] = palette[outputColour >> 4][1]; pixel[2] = palette[outputColour >> 4][2]; pixel[3] = alphaValues[(outputColour >> 1)&7]; } void Machine::output_pixels(int count) { const int32_t start_of_sync = 214; const int32_t end_of_sync = 198; _timestamp += count; while(count--) { OutputState state; // update hmove if (!(_horizontalTimer&3) && _hMoveFlags) { if (_hMoveFlags&1) _playerCounter[0] = (_playerCounter[0]+1)%160; if (_hMoveFlags&2) _playerCounter[1] = (_playerCounter[1]+1)%160; if (_hMoveFlags&4) _missileCounter[0] = (_missileCounter[0]+1)%160; if (_hMoveFlags&8) _missileCounter[1] = (_missileCounter[1]+1)%160; if (_hMoveFlags&16) _ballCounter = (_ballCounter+1)%160; _hMoveCounter --; if ((_hMoveCounter^8^(_playerMotion[0] >> 4)) == 0xf) _hMoveFlags &= ~1; if ((_hMoveCounter^8^(_playerMotion[1] >> 4)) == 0xf) _hMoveFlags &= ~2; if ((_hMoveCounter^8^(_missileMotion[0] >> 4)) == 0xf) _hMoveFlags &= ~4; if ((_hMoveCounter^8^(_missileMotion[1] >> 4)) == 0xf) _hMoveFlags &= ~8; if ((_hMoveCounter^8^(_ballMotion >> 4)) == 0xf) _hMoveFlags &= ~16; } // logic: if in vsync, output that; otherwise if in vblank then output that; // otherwise output a pixel if(_vSyncEnabled) { state = (_horizontalTimer < start_of_sync) ? OutputState::Sync : OutputState::Blank; } else { // blank is decoded as 68 counts; sync and colour burst as 16 counts // 4 blank // 4 sync // 9 'blank'; colour burst after 4 // 40 pixels // it'll be about 43 cycles from start of hsync to start of visible frame, so... // guesses, until I can find information: 26 cycles blank, 16 sync, 40 blank, 160 pixels if(_horizontalTimer >= start_of_sync) state = OutputState::Blank; else if (_horizontalTimer >= end_of_sync) state = OutputState::Sync; else if (_horizontalTimer >= (_vBlankExtend ? 152 : 160)) state = OutputState::Blank; else { if(_vBlankEnabled) { state = OutputState::Blank; } else { state = OutputState::Pixel; } } } _lastOutputStateDuration++; if(state != _lastOutputState) { switch(_lastOutputState) { case OutputState::Blank: _crt->output_blank(_lastOutputStateDuration); break; case OutputState::Sync: _crt->output_sync(_lastOutputStateDuration); break; case OutputState::Pixel: _crt->output_data(_lastOutputStateDuration, atari2600DataType); break; } _lastOutputStateDuration = 0; _lastOutputState = state; if(state == OutputState::Pixel) { _vBlankExtend = false; _crt->allocate_write_area(160); _outputBuffer = _crt->get_write_target_for_buffer(0); } } if(state == OutputState::Pixel) { if(_outputBuffer) get_output_pixel(&_outputBuffer[_lastOutputStateDuration * 4], 159 - _horizontalTimer); // increment all graphics counters _playerCounter[0] = (_playerCounter[0]+1)%160; _playerCounter[1] = (_playerCounter[1]+1)%160; _missileCounter[0] = (_missileCounter[0]+1)%160; _missileCounter[1] = (_missileCounter[1]+1)%160; _ballCounter = (_ballCounter+1)%160; } // assumption here: signed shifts right; otherwise it's just // an attempt to avoid both the % operator and a conditional _horizontalTimer--; const int32_t sign_extension = _horizontalTimer >> 31; _horizontalTimer = (_horizontalTimer&~sign_extension) | (sign_extension&horizontalTimerReload); } } int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { uint8_t returnValue = 0xff; int cycles_run_for = 1; const int32_t ready_line_disable_time = horizontalTimerReload - 3; if(operation == CPU6502::BusOperation::Ready) { int32_t distance_to_end_of_ready = _horizontalTimer - ready_line_disable_time + horizontalTimerReload; cycles_run_for = distance_to_end_of_ready / 3; output_pixels(distance_to_end_of_ready); set_ready_line(false); } else { output_pixels(3); if(_horizontalTimer == ready_line_disable_time) set_ready_line(false); } if(operation != CPU6502::BusOperation::Ready) { // check for a ROM access if ((address&0x1000) && isReadOperation(operation)) { returnValue &= _rom[address&_romMask]; } // check for a RAM access if ((address&0x1280) == 0x80) { if(isReadOperation(operation)) { returnValue &= _ram[address&0x7f]; } else { _ram[address&0x7f] = *value; } } // check for a TIA access if (!(address&0x1080)) { if(isReadOperation(operation)) { switch(address & 0xf) { case 0x00: returnValue &= 0x3f; break; // missile 0 / player collisions case 0x01: returnValue &= 0x3f; break; // missile 1 / player collisions case 0x02: returnValue &= 0x3f; break; // player 0 / playfield / ball collisions case 0x03: returnValue &= 0x3f; break; // player 1 / playfield / ball collisions case 0x04: returnValue &= 0x3f; break; // missile 0 / playfield / ball collisions case 0x05: returnValue &= 0x3f; break; // missile 1 / playfield / ball collisions case 0x06: returnValue &= 0x7f; break; // ball / playfield collisions case 0x07: returnValue &= 0x3f; break; // player / player, missile / missile collisions } } else { switch(address & 0x3f) { case 0x00: _vSyncEnabled = !!(*value & 0x02); break; case 0x01: _vBlankEnabled = !!(*value & 0x02); break; case 0x02: { set_ready_line(true); } break; case 0x03: _horizontalTimer = horizontalTimerReload; break; case 0x04: _playerAndMissileSize[0] = *value; break; case 0x05: _playerAndMissileSize[1] = *value; break; case 0x06: _playerColour[0] = *value; break; case 0x07: _playerColour[1] = *value; break; case 0x08: _playfieldColour = *value; break; case 0x09: _backgroundColour = *value; break; case 0x0a: _playfieldControl = *value; break; case 0x0b: _playerReflection[0] = *value; break; case 0x0c: _playerReflection[1] = *value; break; case 0x0d: _playfield[0] = *value; break; case 0x0e: _playfield[1] = *value; break; case 0x0f: _playfield[2] = *value; break; case 0x10: _playerCounter[0] = 0; break; case 0x11: _playerCounter[1] = 0; break; case 0x12: _missileCounter[0] = 0; break; case 0x13: _missileCounter[1] = 0; break; case 0x14: _ballCounter = 0; break; case 0x1c: _ballGraphicsEnable = _ballGraphicsEnableLatch; case 0x1b: { int index = (address & 0x3f) - 0x1b; _playerGraphicsLatch[index] = *value; if(!(_playerGraphicsLatchEnable[index]&1)) _playerGraphics[index] = _playerGraphicsLatch[index]; _playerGraphics[index^1] = _playerGraphicsLatch[index^1]; } break; case 0x1d: _missileGraphicsEnable[0] = *value; break; case 0x1e: _missileGraphicsEnable[1] = *value; break; case 0x1f: _ballGraphicsEnableLatch = *value; if(!(_ballGraphicsEnableDelay&1)) _ballGraphicsEnable = _ballGraphicsEnableLatch; break; case 0x20: _playerMotion[0] = *value; break; case 0x21: _playerMotion[1] = *value; break; case 0x22: _missileMotion[0] = *value; break; case 0x23: _missileMotion[1] = *value; break; case 0x24: _ballMotion = *value; break; case 0x25: _playerGraphicsLatchEnable[0] = *value; break; case 0x26: _playerGraphicsLatchEnable[1] = *value; break; case 0x27: _ballGraphicsEnableDelay = *value; break; // case 0x28: _missilePosition[0] = _playerPosition[0]; break; case 0x2a: _vBlankExtend = true; _hMoveCounter = 15; _hMoveFlags = 0x1f; break; case 0x2b: _playerMotion[0] = _playerMotion[1] = _missileMotion[0] = _missileMotion[1] = _ballMotion = 0; break; } } // printf("Uncaught TIA %04x\n", address); } // check for a PIA access if ((address&0x1280) == 0x280) { if(isReadOperation(operation)) { switch(address & 0xf) { case 0x04: returnValue &= _piaTimerValue >> _piaTimerShift; break; case 0x05: returnValue &= _piaTimerStatus; _piaTimerStatus &= ~0x40; break; } } else { switch(address & 0x0f) { case 0x04: _piaTimerShift = 0; _piaTimerValue = *value << 0; _piaTimerStatus &= ~0xc0; break; case 0x05: _piaTimerShift = 3; _piaTimerValue = *value << 3; _piaTimerStatus &= ~0xc0; break; case 0x06: _piaTimerShift = 6; _piaTimerValue = *value << 6; _piaTimerStatus &= ~0xc0; break; case 0x07: _piaTimerShift = 10; _piaTimerValue = *value << 10; _piaTimerStatus &= ~0xc0; break; } } // printf("Uncaught PIA %04x\n", address); } if(isReadOperation(operation)) { *value = returnValue; } } if(_piaTimerValue >= cycles_run_for) { _piaTimerValue -= cycles_run_for; } else { _piaTimerValue += 0xff - cycles_run_for; _piaTimerShift = 0; _piaTimerStatus |= 0xc0; } return cycles_run_for; } void Machine::set_rom(size_t length, const uint8_t *data) { length = std::min((size_t)4096, length); memcpy(_rom, data, length); _romMask = length - 1; }