// // // PerformImplementation.hpp // Clock Signal // // Created by Thomas Harte on 05/10/2023. // Copyright © 2023 Thomas Harte. All rights reserved. // #ifndef PerformImplementation_h #define PerformImplementation_h #include "../../../Numeric/Carry.hpp" #include "../../../Numeric/RegisterSizes.hpp" #include "../Interrupts.hpp" #include namespace InstructionSet::x86 { template IntT *resolve( InstructionT &instruction, Source source, DataPointer pointer, RegistersT ®isters, MemoryT &memory, IntT *none = nullptr, IntT *immediate = nullptr ); template uint32_t address( InstructionT &instruction, DataPointer pointer, RegistersT ®isters, MemoryT &memory ) { // TODO: non-word indexes and bases. if constexpr (source == Source::DirectAddress) { return instruction.offset(); } uint32_t address; uint16_t zero = 0; address = *resolve(instruction, pointer.index(), pointer, registers, memory, &zero); if constexpr (is_32bit(model)) { address <<= pointer.scale(); } address += instruction.offset(); if constexpr (source == Source::IndirectNoBase) { return address; } return address + *resolve(instruction, pointer.base(), pointer, registers, memory); } template IntT *register_(RegistersT ®isters) { switch(source) { case Source::eAX: // Slightly contorted if chain here and below: // // (i) does the `constexpr` version of a `switch`; and // (i) ensures .eax() etc aren't called on @c registers for 16-bit processors, so they need not implement 32-bit storage. if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.eax(); } else if constexpr (std::is_same_v) { return ®isters.ax(); } else if constexpr (std::is_same_v) { return ®isters.al(); } else { return nullptr; } case Source::eCX: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.ecx(); } else if constexpr (std::is_same_v) { return ®isters.cx(); } else if constexpr (std::is_same_v) { return ®isters.cl(); } else { return nullptr; } case Source::eDX: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.edx(); } else if constexpr (std::is_same_v) { return ®isters.dx(); } else if constexpr (std::is_same_v) { return ®isters.dl(); } else if constexpr (std::is_same_v) { return nullptr; } case Source::eBX: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.ebx(); } else if constexpr (std::is_same_v) { return ®isters.bx(); } else if constexpr (std::is_same_v) { return ®isters.bl(); } else if constexpr (std::is_same_v) { return nullptr; } case Source::eSPorAH: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.esp(); } else if constexpr (std::is_same_v) { return ®isters.sp(); } else if constexpr (std::is_same_v) { return ®isters.ah(); } else { return nullptr; } case Source::eBPorCH: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.ebp(); } else if constexpr (std::is_same_v) { return ®isters.bp(); } else if constexpr (std::is_same_v) { return ®isters.ch(); } else { return nullptr; } case Source::eSIorDH: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.esi(); } else if constexpr (std::is_same_v) { return ®isters.si(); } else if constexpr (std::is_same_v) { return ®isters.dh(); } else { return nullptr; } case Source::eDIorBH: if constexpr (is_32bit(model) && std::is_same_v) { return ®isters.edi(); } else if constexpr (std::is_same_v) { return ®isters.di(); } else if constexpr (std::is_same_v) { return ®isters.bh(); } else { return nullptr; } default: return nullptr; } } template uint32_t address( InstructionT &instruction, DataPointer pointer, RegistersT ®isters, MemoryT &memory ) { switch(pointer.source()) { default: return 0; case Source::eAX: return *register_(registers); case Source::eCX: return *register_(registers); case Source::eDX: return *register_(registers); case Source::eBX: return *register_(registers); case Source::eSPorAH: return *register_(registers); case Source::eBPorCH: return *register_(registers); case Source::eSIorDH: return *register_(registers); case Source::eDIorBH: return *register_(registers); case Source::Indirect: return address(instruction, pointer, registers, memory); case Source::IndirectNoBase: return address(instruction, pointer, registers, memory); case Source::DirectAddress: return address(instruction, pointer, registers, memory); } } template IntT *resolve( InstructionT &instruction, Source source, DataPointer pointer, RegistersT ®isters, MemoryT &memory, IntT *none, IntT *immediate ) { // Rules: // // * if this is a memory access, set target_address and break; // * otherwise return the appropriate value. uint32_t target_address; switch(source) { case Source::eAX: return register_(registers); case Source::eCX: return register_(registers); case Source::eDX: return register_(registers); case Source::eBX: return register_(registers); case Source::eSPorAH: return register_(registers); case Source::eBPorCH: return register_(registers); case Source::eSIorDH: return register_(registers); case Source::eDIorBH: return register_(registers); // Segment registers are always 16-bit. case Source::ES: if constexpr (std::is_same_v) return ®isters.es(); else return nullptr; case Source::CS: if constexpr (std::is_same_v) return ®isters.cs(); else return nullptr; case Source::SS: if constexpr (std::is_same_v) return ®isters.ss(); else return nullptr; case Source::DS: if constexpr (std::is_same_v) return ®isters.ds(); else return nullptr; // 16-bit models don't have FS and GS. case Source::FS: if constexpr (is_32bit(model) && std::is_same_v) return ®isters.fs(); else return nullptr; case Source::GS: if constexpr (is_32bit(model) && std::is_same_v) return ®isters.gs(); else return nullptr; case Source::Immediate: *immediate = instruction.operand(); return immediate; case Source::None: return none; case Source::Indirect: target_address = address(instruction, pointer, registers, memory); break; case Source::IndirectNoBase: target_address = address(instruction, pointer, registers, memory); break; case Source::DirectAddress: target_address = address(instruction, pointer, registers, memory); break; } // If execution has reached here then a memory fetch is required. // Do it and exit. const Source segment = pointer.segment(instruction.segment_override()); return &memory.template access(segment, target_address); }; namespace Primitive { // The below takes a reference in order properly to handle PUSH SP, which should place the value of SP after the // push onto the stack. template void push(IntT &value, MemoryT &memory, RegistersT ®isters) { registers.sp_ -= sizeof(IntT); memory.template access( InstructionSet::x86::Source::SS, registers.sp_) = value; memory.template write_back(); } template IntT pop(MemoryT &memory, RegistersT ®isters) { const auto value = memory.template access( InstructionSet::x86::Source::SS, registers.sp_); registers.sp_ += sizeof(IntT); return value; } // // Comments below on intended functioning of each operation come from the 1997 edition of the // Intel Architecture Software Developer’s Manual; that year all such definitions still fitted within a // single volume, Volume 2. // // Order Number 243191; e.g. https://www.ardent-tool.com/CPU/docs/Intel/IA/243191-002.pdf // inline void aaa(CPU::RegisterPair16 &ax, Status &status) { // P. 313 /* IF ((AL AND 0FH) > 9) OR (AF = 1) THEN AL ← (AL + 6); AH ← AH + 1; AF ← 1; CF ← 1; ELSE AF ← 0; CF ← 0; FI; AL ← AL AND 0FH; */ /* The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are cleared to 0. The OF, SF, ZF, and PF flags are undefined. */ if((ax.halves.low & 0x0f) > 9 || status.flag()) { ax.halves.low += 6; ++ax.halves.high; status.set_from(1); } else { status.set_from(0); } ax.halves.low &= 0x0f; } inline void aad(CPU::RegisterPair16 &ax, uint8_t imm, Status &status) { /* tempAL ← AL; tempAH ← AH; AL ← (tempAL + (tempAH * imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *) AH ← 0 */ /* The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined. */ ax.halves.low = ax.halves.low + (ax.halves.high * imm); ax.halves.high = 0; status.set_from(ax.halves.low); } template void aam(CPU::RegisterPair16 &ax, uint8_t imm, Status &status, FlowControllerT &flow_controller) { /* tempAL ← AL; AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *) AL ← tempAL MOD imm8; */ /* The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined. */ /* If ... an immediate value of 0 is used, it will cause a #DE (divide error) exception. */ if(!imm) { flow_controller.interrupt(Interrupt::DivideError); return; } ax.halves.high = ax.halves.low / imm; ax.halves.low = ax.halves.low % imm; status.set_from(ax.halves.low); } inline void aas(CPU::RegisterPair16 &ax, Status &status) { /* IF ((AL AND 0FH) > 9) OR (AF = 1) THEN AL ← AL – 6; AH ← AH – 1; AF ← 1; CF ← 1; ELSE CF ← 0; AF ← 0; FI; AL ← AL AND 0FH; */ /* The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and PF flags are undefined. */ if((ax.halves.low & 0x0f) > 9 || status.flag()) { ax.halves.low -= 6; --ax.halves.high; status.set_from(1); } else { status.set_from(0); } ax.halves.low &= 0x0f; } inline void daa(uint8_t &al, Status &status) { /* (as modified by https://www.felixcloutier.com/x86/daa ...) old_AL ← AL; old_CF ← CF; CF ← 0; IF (((AL AND 0FH) > 9) or AF = 1) THEN AL ← AL + 6; CF ← old_CF OR CarryFromLastAddition; (* CF OR carry from AL ← AL + 6 *) AF ← 1; ELSE AF ← 0; FI; IF ((old_AL > 99H) or old_CF = 1) THEN AL ← AL + 60H; CF ← 1; ELSE CF ← 0; FI; */ /* The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined. */ const uint8_t old_al = al; const auto old_carry = status.flag(); status.set_from(0); if((al & 0x0f) > 0x09 || status.flag()) { status.set_from(old_carry | (al > 0xf9)); al += 0x06; status.set_from(1); } else { status.set_from(0); } if(old_al > 0x99 || old_carry) { al += 0x60; status.set_from(1); } else { status.set_from(0); } status.set_from(al); } inline void das(uint8_t &al, Status &status) { /* (as modified by https://www.felixcloutier.com/x86/daa ...) old_AL ← AL; old_CF ← CF; CF ← 0; IF (((AL AND 0FH) > 9) or AF = 1) THEN AL ← AL - 6; CF ← old_CF OR CarryFromLastAddition; (* CF OR borrow from AL ← AL - 6 *) AF ← 1; ELSE AF ← 0; FI; IF ((old_AL > 99H) or old_CF = 1) THEN AL ← AL - 60H; CF ← 1; ELSE CF ← 0; FI; */ /* The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined. */ const uint8_t old_al = al; const auto old_carry = status.flag(); status.set_from(0); if((al & 0x0f) > 0x09 || status.flag()) { status.set_from(old_carry | (al < 0x06)); al -= 0x06; status.set_from(1); } else { status.set_from(0); } if(old_al > 0x99 || old_carry) { al -= 0x60; status.set_from(1); } else { status.set_from(0); } status.set_from(al); } template void add(IntT &destination, IntT source, Status &status) { /* DEST ← DEST + SRC [+ CF]; */ /* The OF, SF, ZF, AF, CF, and PF flags are set according to the result. */ const IntT result = destination + source + (with_carry ? status.carry_bit() : 0); status.set_from( Numeric::carried_out() - 1>(destination, source, result)); status.set_from( Numeric::carried_in<4>(destination, source, result)); status.set_from( Numeric::overflow(destination, source, result)); status.set_from(result); destination = result; } template void sub(IntT &destination, IntT source, Status &status) { /* DEST ← DEST - (SRC [+ CF]); */ /* The OF, SF, ZF, AF, CF, and PF flags are set according to the result. */ const IntT result = destination - source - (with_borrow ? status.carry_bit() : 0); status.set_from( Numeric::carried_out() - 1>(destination, source, result)); status.set_from( Numeric::carried_in<4>(destination, source, result)); status.set_from( Numeric::overflow(destination, source, result)); status.set_from(result); if constexpr (write_back) { destination = result; } } template void test(IntT &destination, IntT source, Status &status) { /* TEMP ← SRC1 AND SRC2; SF ← MSB(TEMP); IF TEMP = 0 THEN ZF ← 0; ELSE ZF ← 1; FI: PF ← BitwiseXNOR(TEMP[0:7]); CF ← 0; OF ← 0; */ /* The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the result (see the “Operation” section above). The state of the AF flag is undefined. */ const IntT result = destination & source; status.set_from(0); status.set_from(result); } template void xchg(IntT &destination, IntT &source) { /* TEMP ← DEST DEST ← SRC SRC ← TEMP */ std::swap(destination, source); } template void mul(IntT &destination_high, IntT &destination_low, IntT source, Status &status) { /* IF byte operation THEN AX ← AL * SRC ELSE (* word or doubleword operation *) IF OperandSize = 16 THEN DX:AX ← AX * SRC ELSE (* OperandSize = 32 *) EDX:EAX ← EAX * SRC FI; */ /* The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they are set to 1. The SF, ZF, AF, and PF flags are undefined. */ destination_high = (destination_low * source) >> (8 * sizeof(IntT)); destination_low *= source; status.set_from(destination_high); } template void imul(IntT &destination_high, IntT &destination_low, IntT source, Status &status) { /* (as modified by https://www.felixcloutier.com/x86/daa ...) IF (OperandSize = 8) THEN AX ← AL ∗ SRC (* signed multiplication *) IF (AX = SignExtend(AL)) THEN CF = 0; OF = 0; ELSE CF = 1; OF = 1; FI; ELSE IF OperandSize = 16 THEN DX:AX ← AX ∗ SRC (* signed multiplication *) IF (DX:AX = SignExtend(AX)) THEN CF = 0; OF = 0; ELSE CF = 1; OF = 1; FI; ELSE (* OperandSize = 32 *) EDX:EAX ← EAX ∗ SRC (* signed multiplication *) IF (EDX:EAX = SignExtend(EAX)) THEN CF = 0; OF = 0; ELSE CF = 1; OF = 1; FI; FI; */ using sIntT = typename std::make_signed::type; destination_high = (sIntT(destination_low) * sIntT(source)) >> (8 * sizeof(IntT)); destination_low = IntT(sIntT(destination_low) * sIntT(source)); const auto sign_extension = (destination_low & Numeric::top_bit()) ? IntT(~0) : 0; status.set_from(destination_high != sign_extension); } template void div(IntT &destination_high, IntT &destination_low, IntT source, FlowControllerT &flow_controller) { /* IF SRC = 0 THEN #DE; (* divide error *) FI; IF OperandSize = 8 (* word/byte operation *) THEN temp ← AX / SRC; IF temp > FFH THEN #DE; (* divide error *) ; ELSE AL ← temp; AH ← AX MOD SRC; FI; ELSE IF OperandSize = 16 (* doubleword/word operation *) THEN temp ← DX:AX / SRC; IF temp > FFFFH THEN #DE; (* divide error *) ; ELSE AX ← temp; DX ← DX:AX MOD SRC; FI; ELSE (* quadword/doubleword operation *) temp ← EDX:EAX / SRC; IF temp > FFFFFFFFH THEN #DE; (* divide error *) ; ELSE EAX ← temp; EDX ← EDX:EAX MOD SRC; FI; FI; FI; */ /* The CF, OF, SF, ZF, AF, and PF flags are undefined. */ if(!source) { flow_controller.interrupt(Interrupt::DivideError); return; } // TEMPORARY HACK. Will not work with DWords. const uint32_t dividend = (destination_high << (8 * sizeof(IntT))) + destination_low; const auto result = dividend / source; if(IntT(result) != result) { flow_controller.interrupt(Interrupt::DivideError); return; } destination_low = IntT(result); destination_high = dividend % source; } template void idiv(IntT &destination_high, IntT &destination_low, IntT source, FlowControllerT &flow_controller) { /* IF SRC = 0 THEN #DE; (* divide error *) FI; IF OperandSize = 8 (* word/byte operation *) THEN temp ← AX / SRC; (* signed division *) IF (temp > 7FH) OR (temp < 80H) (* if a positive result is greater than 7FH or a negative result is less than 80H *) THEN #DE; (* divide error *) ; ELSE AL ← temp; AH ← AX MOD SRC; FI; ELSE IF OperandSize = 16 (* doubleword/word operation *) THEN temp ← DX:AX / SRC; (* signed division *) IF (temp > 7FFFH) OR (temp < 8000H) (* if a positive result is greater than 7FFFH or a negative result is less than 8000H *) THEN #DE; (* divide error *) ; ELSE AX ← temp; DX ← DX:AX MOD SRC; FI; ELSE (* quadword/doubleword operation *) temp ← EDX:EAX / SRC; (* signed division *) IF (temp > 7FFFFFFFH) OR (temp < 80000000H) (* if a positive result is greater than 7FFFFFFFH or a negative result is less than 80000000H *) THEN #DE; (* divide error *) ; ELSE EAX ← temp; EDX ← EDX:EAX MOD SRC; FI; FI; FI; */ /* The CF, OF, SF, ZF, AF, and PF flags are undefined. */ if(!source) { flow_controller.interrupt(Interrupt::DivideError); return; } // TEMPORARY HACK. Will not work with DWords. using sIntT = typename std::make_signed::type; const int32_t dividend = (sIntT(destination_high) << (8 * sizeof(IntT))) + destination_low; const auto result = dividend / sIntT(source); if(sIntT(result) != result) { flow_controller.interrupt(Interrupt::DivideError); return; } destination_low = IntT(result); destination_high = dividend % sIntT(source); } template void inc(IntT &destination, Status &status) { /* DEST ← DEST + 1; */ /* The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. */ ++destination; status.set_from(destination == Numeric::top_bit()); status.set_from(((destination - 1) ^ destination) & 0x10); status.set_from(destination); } template void jump(bool condition, IntT displacement, RegistersT ®isters, FlowControllerT &flow_controller) { /* IF condition THEN EIP ← EIP + SignExtend(DEST); IF OperandSize = 16 THEN EIP ← EIP AND 0000FFFFH; FI; FI; */ // TODO: proper behaviour in 32-bit. if(condition) { flow_controller.jump(registers.ip() + displacement); } } template void loop(IntT &counter, OffsetT displacement, RegistersT ®isters, FlowControllerT &flow_controller) { --counter; if(counter) { flow_controller.jump(registers.ip() + displacement); } } template void loope(IntT &counter, OffsetT displacement, RegistersT ®isters, Status &status, FlowControllerT &flow_controller) { --counter; if(counter && status.flag()) { flow_controller.jump(registers.ip() + displacement); } } template void loopne(IntT &counter, OffsetT displacement, RegistersT ®isters, Status &status, FlowControllerT &flow_controller) { --counter; if(counter && !status.flag()) { flow_controller.jump(registers.ip() + displacement); } } template void dec(IntT &destination, Status &status) { /* DEST ← DEST - 1; */ /* The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. */ status.set_from(destination == Numeric::top_bit()); --destination; status.set_from(destination); status.set_from(((destination + 1) ^ destination) & 0x10); } template void and_(IntT &destination, IntT source, Status &status) { /* DEST ← DEST AND SRC; */ /* The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is undefined. */ destination &= source; status.set_from(0); status.set_from(destination); } template void or_(IntT &destination, IntT source, Status &status) { /* DEST ← DEST OR SRC; */ /* The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is undefined. */ destination |= source; status.set_from(0); status.set_from(destination); } template void xor_(IntT &destination, IntT source, Status &status) { /* DEST ← DEST XOR SRC; */ /* The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is undefined. */ destination ^= source; status.set_from(0); status.set_from(destination); } template void neg(IntT &destination, Status &status) { /* IF DEST = 0 THEN CF ← 0 ELSE CF ← 1; FI; DEST ← –(DEST) */ /* The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and PF flags are set according to the result. */ status.set_from(Numeric::carried_in<4>(IntT(0), destination, IntT(-destination))); destination = -destination; status.set_from(destination); status.set_from(destination == Numeric::top_bit()); status.set_from(destination); } template void not_(IntT &destination) { /* DEST ← NOT DEST; */ /* Flags affected: none. */ destination = ~destination; } template void call_relative(IntT offset, RegistersT ®isters, FlowControllerT &flow_controller) { flow_controller.call(registers.ip() + offset); } template void call_absolute(IntT target, FlowControllerT &flow_controller) { flow_controller.call(target); } template void jump_absolute(IntT target, FlowControllerT &flow_controller) { flow_controller.jump(target); } template void call_far(InstructionT &instruction, FlowControllerT &flow_controller, RegistersT ®isters, MemoryT &memory ) { // TODO: eliminate 16-bit assumption below. uint16_t source_address = 0; const auto pointer = instruction.destination(); switch(pointer.source()) { default: case Source::Immediate: flow_controller.call(instruction.segment(), instruction.offset()); return; case Source::Indirect: source_address = address(instruction, pointer, registers, memory); break; case Source::IndirectNoBase: source_address = address(instruction, pointer, registers, memory); break; case Source::DirectAddress: source_address = address(instruction, pointer, registers, memory); break; } const Source source_segment = pointer.segment(instruction.segment_override()); const uint16_t offset = memory.template access(source_segment, source_address); source_address += 2; const uint16_t segment = memory.template access(source_segment, source_address); flow_controller.call(segment, offset); } template void jump_far(InstructionT &instruction, FlowControllerT &flow_controller, RegistersT ®isters, MemoryT &memory ) { // TODO: eliminate 16-bit assumption below. uint16_t source_address = 0; const auto pointer = instruction.destination(); switch(pointer.source()) { default: case Source::Immediate: flow_controller.jump(instruction.segment(), instruction.offset()); return; case Source::Indirect: source_address = address(instruction, pointer, registers, memory); break; case Source::IndirectNoBase: source_address = address(instruction, pointer, registers, memory); break; case Source::DirectAddress: source_address = address(instruction, pointer, registers, memory); break; } const Source source_segment = pointer.segment(instruction.segment_override()); const uint16_t offset = memory.template access(source_segment, source_address); source_address += 2; const uint16_t segment = memory.template access(source_segment, source_address); flow_controller.jump(segment, offset); } template void iret(RegistersT ®isters, FlowControllerT &flow_controller, MemoryT &memory, Status &status) { // TODO: all modes other than 16-bit real mode. registers.ip() = pop(memory, registers); registers.cs() = pop(memory, registers); status.set(pop(memory, registers)); flow_controller.did_iret(); } template void ret_near(InstructionT instruction, RegistersT ®isters, FlowControllerT &flow_controller, MemoryT &memory) { registers.ip() = pop(memory, registers); registers.sp() += instruction.operand(); flow_controller.did_near_ret(); } template void ret_far(InstructionT instruction, RegistersT ®isters, FlowControllerT &flow_controller, MemoryT &memory) { registers.ip() = pop(memory, registers); registers.cs() = pop(memory, registers); registers.sp() += instruction.operand(); flow_controller.did_far_ret(); } template void ld( InstructionT &instruction, uint16_t &destination, MemoryT &memory, RegistersT ®isters ) { const auto pointer = instruction.source(); auto source_address = address(instruction, pointer, registers, memory); const Source source_segment = pointer.segment(instruction.segment_override()); destination = memory.template access(source_segment, source_address); source_address += 2; switch(selector) { case Source::DS: registers.ds() = memory.template access(source_segment, source_address); break; case Source::ES: registers.es() = memory.template access(source_segment, source_address); break; } } template void lea( const InstructionT &instruction, IntT &destination, MemoryT &memory, RegistersT ®isters ) { // TODO: address size. destination = IntT(address(instruction, instruction.source(), registers, memory)); } template void xlat( const InstructionT &instruction, MemoryT &memory, RegistersT ®isters ) { Source source_segment = instruction.segment_override(); if(source_segment == Source::None) source_segment = Source::DS; AddressT address; if constexpr (std::is_same_v) { address = registers.bx() + registers.al(); } registers.al() = memory.template access(source_segment, address); } template void mov(IntT &destination, IntT source) { destination = source; } template void int_(uint8_t vector, FlowControllerT &flow_controller) { flow_controller.interrupt(vector); } template void into(Status &status, FlowControllerT &flow_controller) { if(status.flag()) { flow_controller.interrupt(Interrupt::OnOverflow); } } inline void sahf(uint8_t &ah, Status &status) { /* EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH; */ status.set_from(ah); status.set_from(!(ah & 0x40)); status.set_from(ah & 0x10); status.set_from(!(ah & 0x04)); status.set_from(ah & 0x01); } inline void lahf(uint8_t &ah, Status &status) { /* AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF); */ ah = (status.flag() ? 0x80 : 0x00) | (status.flag() ? 0x40 : 0x00) | (status.flag() ? 0x10 : 0x00) | (status.flag() ? 0x00 : 0x04) | 0x02 | (status.flag() ? 0x01 : 0x00); } template void cbw(IntT &ax) { constexpr IntT test_bit = 1 << (sizeof(IntT) * 4 - 1); constexpr IntT low_half = (1 << (sizeof(IntT) * 4)) - 1; if(ax & test_bit) { ax |= ~low_half; } else { ax &= low_half; } } template void cwd(IntT &dx, IntT ax) { dx = ax & Numeric::top_bit() ? IntT(~0) : IntT(0); } // TODO: changes to the interrupt flag do quite a lot more in protected mode. inline void clc(Status &status) { status.set_from(0); } inline void cld(Status &status) { status.set_from(0); } inline void cli(Status &status) { status.set_from(0); } inline void stc(Status &status) { status.set_from(1); } inline void std(Status &status) { status.set_from(1); } inline void sti(Status &status) { status.set_from(1); } inline void cmc(Status &status) { status.set_from(!status.flag()); } inline void salc(uint8_t &al, const Status &status) { al = status.flag() ? 0xff : 0x00; } template void setmo(IntT &destination, Status &status) { destination = ~0; status.set_from(0); status.set_from(destination); } template void setmoc(IntT &destination, uint8_t cl, Status &status) { if(cl) setmo(destination, status); } template inline void rcl(IntT &destination, uint8_t count, Status &status) { /* (* RCL and RCR instructions *) SIZE ← OperandSize CASE (determine count) OF SIZE = 8: tempCOUNT ← (COUNT AND 1FH) MOD 9; SIZE = 16: tempCOUNT ← (COUNT AND 1FH) MOD 17; SIZE = 32: tempCOUNT ← COUNT AND 1FH; ESAC; */ /* (* RCL instruction operation *) WHILE (tempCOUNT ≠ 0) DO tempCF ← MSB(DEST); DEST ← (DEST * 2) + CF; CF ← tempCF; tempCOUNT ← tempCOUNT – 1; OD; ELIHW; IF COUNT = 1 THEN OF ← MSB(DEST) XOR CF; ELSE OF is undefined; FI; */ /* The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single- bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and PF flags are not affected. */ const auto temp_count = count % (Numeric::bit_size() + 1); auto carry = status.carry_bit(); switch(temp_count) { case 0: break; case Numeric::bit_size(): { const IntT temp_carry = destination & 1; destination = (destination >> 1) | (carry << (Numeric::bit_size() - 1)); carry = temp_carry; } break; default: { const IntT temp_carry = destination & (Numeric::top_bit() >> (temp_count - 1)); destination = (destination << temp_count) | (destination >> (Numeric::bit_size() + 1 - temp_count)) | (carry << (temp_count - 1)); carry = temp_carry ? 1 : 0; } break; } status.set_from(carry); status.set_from( ((destination >> (Numeric::bit_size() - 1)) & 1) ^ carry ); } template inline void rcr(IntT &destination, uint8_t count, Status &status) { /* (* RCR instruction operation *) IF COUNT = 1 THEN OF ← MSB(DEST) XOR CF; ELSE OF is undefined; FI; WHILE (tempCOUNT ≠ 0) DO tempCF ← LSB(SRC); DEST ← (DEST / 2) + (CF * 2SIZE); CF ← tempCF; tempCOUNT ← tempCOUNT – 1; OD; */ auto carry = status.carry_bit(); status.set_from( ((destination >> (Numeric::bit_size() - 1)) & 1) ^ carry ); const auto temp_count = count % (Numeric::bit_size() + 1); switch(temp_count) { case 0: break; case Numeric::bit_size(): { const IntT temp_carry = destination & Numeric::top_bit(); destination = (destination << 1) | carry; carry = temp_carry; } break; default: { const IntT temp_carry = destination & (1 << (temp_count - 1)); destination = (destination >> temp_count) | (destination << (Numeric::bit_size() + 1 - temp_count)) | (carry << (Numeric::bit_size() - temp_count)); carry = temp_carry; } break; } status.set_from(carry); } template inline void rol(IntT &destination, uint8_t count, Status &status) { /* (* ROL and ROR instructions *) SIZE ← OperandSize CASE (determine count) OF SIZE = 8: tempCOUNT ← COUNT MOD 8; SIZE = 16: tempCOUNT ← COUNT MOD 16; SIZE = 32: tempCOUNT ← COUNT MOD 32; ESAC; */ /* (* ROL instruction operation *) WHILE (tempCOUNT ≠ 0) DO tempCF ← MSB(DEST); DEST ← (DEST * 2) + tempCF; tempCOUNT ← tempCOUNT – 1; OD; ELIHW; IF COUNT = 1 THEN OF ← MSB(DEST) XOR CF; ELSE OF is undefined; FI; */ /* The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single- bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and PF flags are not affected. */ const auto temp_count = count & (Numeric::bit_size() - 1); if(!count) { // TODO: is this 8086-specific? i.e. do the other x86s also exit without affecting flags when temp_count = 0? return; } if(temp_count) { destination = (destination << temp_count) | (destination >> (Numeric::bit_size() - temp_count)); } status.set_from(destination & 1); status.set_from( ((destination >> (Numeric::bit_size() - 1)) ^ destination) & 1 ); } template inline void ror(IntT &destination, uint8_t count, Status &status) { /* (* ROL and ROR instructions *) SIZE ← OperandSize CASE (determine count) OF SIZE = 8: tempCOUNT ← COUNT MOD 8; SIZE = 16: tempCOUNT ← COUNT MOD 16; SIZE = 32: tempCOUNT ← COUNT MOD 32; ESAC; */ /* (* ROR instruction operation *) WHILE (tempCOUNT ≠ 0) DO tempCF ← LSB(DEST); DEST ← (DEST / 2) + (tempCF * 2^SIZE); tempCOUNT ← tempCOUNT – 1; OD; ELIHW; IF COUNT = 1 THEN OF ← MSB(DEST) XOR MSB - 1 (DEST); ELSE OF is undefined; FI; */ /* The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single- bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and PF flags are not affected. */ const auto temp_count = count & (Numeric::bit_size() - 1); if(!count) { // TODO: is this 8086-specific? i.e. do the other x86s also exit without affecting flags when temp_count = 0? return; } if(temp_count) { destination = (destination >> temp_count) | (destination << (Numeric::bit_size() - temp_count)); } status.set_from(destination & Numeric::top_bit()); status.set_from( (destination ^ (destination << 1)) & Numeric::top_bit() ); } /* tempCOUNT ← (COUNT AND 1FH); tempDEST ← DEST; WHILE (tempCOUNT ≠ 0) DO IF instruction is SAL or SHL THEN CF ← MSB(DEST); ELSE (* instruction is SAR or SHR *) CF ← LSB(DEST); FI; IF instruction is SAL or SHL THEN DEST ← DEST ∗ 2; ELSE IF instruction is SAR THEN DEST ← DEST / 2 (*Signed divide, rounding toward negative infinity*); ELSE (* instruction is SHR *) DEST ← DEST / 2 ; (* Unsigned divide *); FI; FI; tempCOUNT ← tempCOUNT – 1; OD; (* Determine overflow for the various instructions *) IF COUNT = 1 THEN IF instruction is SAL or SHL THEN OF ← MSB(DEST) XOR CF; ELSE IF instruction is SAR THEN OF ← 0; ELSE (* instruction is SHR *) OF ← MSB(tempDEST); FI; FI; ELSE IF COUNT = 0 THEN All flags remain unchanged; ELSE (* COUNT neither 1 or 0 *) OF ← undefined; FI; FI; */ /* The CF flag contains the value of the last bit shifted out of the destination operand; it is undefined for SHL and SHR instructions where the count is greater than or equal to the size (in bits) of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined. */ template inline void sal(IntT &destination, uint8_t count, Status &status) { switch(count) { case 0: return; case Numeric::bit_size(): status.set_from(destination & 1); destination = 0; break; default: if(count > Numeric::bit_size()) { status.set_from(0); destination = 0; } else { const auto mask = (Numeric::top_bit() >> (count - 1)); status.set_from( destination & mask ); status.set_from( (destination ^ (destination << 1)) & mask ); destination <<= count; } break; } status.set_from(destination); } template inline void sar(IntT &destination, uint8_t count, Status &status) { if(!count) { return; } const IntT sign = Numeric::top_bit() & destination; if(count >= Numeric::bit_size()) { destination = sign ? IntT(~0) : IntT(0); status.set_from(sign); } else { const IntT mask = 1 << (count - 1); status.set_from(destination & mask); destination = (destination >> count) | (sign ? ~(IntT(~0) >> count) : 0); } status.set_from(0); status.set_from(destination); } template inline void shr(IntT &destination, uint8_t count, Status &status) { if(!count) { return; } status.set_from(Numeric::top_bit() & destination); if(count == Numeric::bit_size()) { status.set_from(Numeric::top_bit() & destination); destination = 0; } else if(count > Numeric::bit_size()) { status.set_from(0); destination = 0; } else { const IntT mask = 1 << (count - 1); status.set_from(destination & mask); destination >>= count; } status.set_from(destination); } template void popf(MemoryT &memory, RegistersT ®isters, Status &status) { status.set(pop(memory, registers)); } template void pushf(MemoryT &memory, RegistersT ®isters, Status &status) { uint16_t value = status.get(); push(value, memory, registers); } template bool repetition_over(const InstructionT &instruction, AddressT &eCX) { return instruction.repetition() != Repetition::None && !eCX; } template void repeat_ene(const InstructionT &instruction, Status &status, AddressT &eCX, FlowControllerT &flow_controller) { if( instruction.repetition() == Repetition::None || // No repetition => stop. !(--eCX) || // [e]cx is zero after being decremented => stop. (instruction.repetition() == Repetition::RepNE) == status.flag() // repe and !zero, or repne and zero => stop. ) { return; } flow_controller.repeat_last(); } template void repeat(const InstructionT &instruction, AddressT &eCX, FlowControllerT &flow_controller) { if( instruction.repetition() == Repetition::None || // No repetition => stop. !(--eCX) // [e]cx is zero after being decremented => stop. ) { return; } flow_controller.repeat_last(); } template void cmps(const InstructionT &instruction, AddressT &eCX, AddressT &eSI, AddressT &eDI, MemoryT &memory, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } Source source_segment = instruction.segment_override(); if(source_segment == Source::None) source_segment = Source::DS; IntT lhs = memory.template access(source_segment, eSI); const IntT rhs = memory.template access(Source::ES, eDI); eSI += status.direction() * sizeof(IntT); eDI += status.direction() * sizeof(IntT); Primitive::sub(lhs, rhs, status); repeat_ene(instruction, status, eCX, flow_controller); } template void scas(const InstructionT &instruction, AddressT &eCX, AddressT &eDI, IntT &eAX, MemoryT &memory, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } const IntT rhs = memory.template access(Source::ES, eDI); eDI += status.direction() * sizeof(IntT); Primitive::sub(eAX, rhs, status); repeat_ene(instruction, status, eCX, flow_controller); } template void lods(const InstructionT &instruction, AddressT &eCX, AddressT &eSI, IntT &eAX, MemoryT &memory, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } Source source_segment = instruction.segment_override(); if(source_segment == Source::None) source_segment = Source::DS; eAX = memory.template access(source_segment, eSI); eSI += status.direction() * sizeof(IntT); repeat(instruction, eCX, flow_controller); } template void movs(const InstructionT &instruction, AddressT &eCX, AddressT &eSI, AddressT &eDI, MemoryT &memory, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } Source source_segment = instruction.segment_override(); if(source_segment == Source::None) source_segment = Source::DS; memory.template access(Source::ES, eDI) = memory.template access(source_segment, eSI); eSI += status.direction() * sizeof(IntT); eDI += status.direction() * sizeof(IntT); repeat(instruction, eCX, flow_controller); } template void stos(const InstructionT &instruction, AddressT &eCX, AddressT &eDI, IntT &eAX, MemoryT &memory, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } memory.template access(Source::ES, eDI) = eAX; eDI += status.direction() * sizeof(IntT); repeat(instruction, eCX, flow_controller); } template void outs(const InstructionT &instruction, AddressT &eCX, uint16_t port, AddressT &eSI, MemoryT &memory, IOT &io, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } Source source_segment = instruction.segment_override(); if(source_segment == Source::None) source_segment = Source::DS; io.template out(port, memory.template access(source_segment, eSI)); eSI += status.direction() * sizeof(IntT); repeat(instruction, eCX, flow_controller); } template void ins(const InstructionT &instruction, AddressT &eCX, uint16_t port, AddressT &eDI, MemoryT &memory, IOT &io, Status &status, FlowControllerT &flow_controller) { if(repetition_over(instruction, eCX)) { return; } memory.template access(Source::ES, eDI) = io.template in(port); eDI += status.direction() * sizeof(IntT); repeat(instruction, eCX, flow_controller); } template void out(uint16_t port, IntT value, IOT &io) { io.template out(port, value); } template void in(uint16_t port, IntT &value, IOT &io) { value = io.template in(port); } } template < Model model, DataSize data_size, AddressSize address_size, typename InstructionT, typename FlowControllerT, typename RegistersT, typename MemoryT, typename IOT > void perform( const InstructionT &instruction, Status &status, FlowControllerT &flow_controller, RegistersT ®isters, MemoryT &memory, IOT &io ) { using IntT = typename DataSizeType::type; using AddressT = typename AddressSizeType::type; // Establish source() and destination() shorthand to fetch data if necessary. IntT immediate; const auto source = [&]() -> IntT& { return *resolve( instruction, instruction.source().source(), instruction.source(), registers, memory, nullptr, &immediate); }; const auto destination = [&]() -> IntT& { return *resolve( instruction, instruction.destination().source(), instruction.destination(), registers, memory, nullptr, &immediate); }; // Performs a displacement jump only if @c condition is true. const auto jcc = [&](bool condition) { Primitive::jump( condition, instruction.displacement(), registers, flow_controller); }; const auto shift_count = [&]() -> uint8_t { static constexpr uint8_t mask = (model != Model::i8086) ? 0x1f : 0xff; switch(instruction.source().source()) { case Source::None: return 1; case Source::Immediate: return uint8_t(instruction.operand()) & mask; default: return registers.cl() & mask; } }; // Some instructions use a pair of registers as an extended accumulator — DX:AX or EDX:EAX. // The two following return the high and low parts of that pair; they also work in Byte mode to return AH:AL, // i.e. AX split into high and low parts. const auto pair_high = [&]() -> IntT& { if constexpr (data_size == DataSize::Byte) return registers.ah(); else if constexpr (data_size == DataSize::Word) return registers.dx(); else if constexpr (data_size == DataSize::DWord) return registers.edx(); }; const auto pair_low = [&]() -> IntT& { if constexpr (data_size == DataSize::Byte) return registers.al(); else if constexpr (data_size == DataSize::Word) return registers.ax(); else if constexpr (data_size == DataSize::DWord) return registers.eax(); }; // For the string operations, evaluate to either SI and DI or ESI and EDI, depending on the address size. const auto eSI = [&]() -> AddressT& { if constexpr (std::is_same_v) { return registers.si(); } else { return registers.esi(); } }; const auto eDI = [&]() -> AddressT& { if constexpr (std::is_same_v) { return registers.di(); } else { return registers.edi(); } }; // For counts, provide either eCX or CX depending on address size. const auto eCX = [&]() -> AddressT& { if constexpr (std::is_same_v) { return registers.cx(); } else { return registers.ecx(); } }; // Gets the port for an IN or OUT; these are always 16-bit. const auto port = [&](Source source) -> uint16_t { switch(source) { case Source::DirectAddress: return instruction.operand(); default: return registers.dx(); } }; // Guide to the below: // // * use hard-coded register names where appropriate; // * return directly if there is definitely no possible write back to RAM; // * otherwise use the source() and destination() lambdas, and break in order to allow a writeback if necessary. switch(instruction.operation) { default: assert(false); case Operation::AAA: Primitive::aaa(registers.axp(), status); return; case Operation::AAD: Primitive::aad(registers.axp(), instruction.operand(), status); return; case Operation::AAM: Primitive::aam(registers.axp(), instruction.operand(), status, flow_controller); return; case Operation::AAS: Primitive::aas(registers.axp(), status); return; case Operation::DAA: Primitive::daa(registers.al(), status); return; case Operation::DAS: Primitive::das(registers.al(), status); return; case Operation::CBW: Primitive::cbw(pair_low()); return; case Operation::CWD: Primitive::cwd(pair_high(), pair_low()); return; case Operation::ESC: case Operation::NOP: return; case Operation::HLT: flow_controller.halt(); return; case Operation::WAIT: flow_controller.wait(); return; case Operation::ADC: Primitive::add(destination(), source(), status); break; case Operation::ADD: Primitive::add(destination(), source(), status); break; case Operation::SBB: Primitive::sub(destination(), source(), status); break; case Operation::SUB: Primitive::sub(destination(), source(), status); break; case Operation::CMP: Primitive::sub(destination(), source(), status); break; case Operation::TEST: Primitive::test(destination(), source(), status); break; case Operation::MUL: Primitive::mul(pair_high(), pair_low(), source(), status); return; case Operation::IMUL_1: Primitive::imul(pair_high(), pair_low(), source(), status); return; case Operation::DIV: Primitive::div(pair_high(), pair_low(), source(), flow_controller); return; case Operation::IDIV: Primitive::idiv(pair_high(), pair_low(), source(), flow_controller); return; case Operation::INC: Primitive::inc(destination(), status); break; case Operation::DEC: Primitive::dec(destination(), status); break; case Operation::AND: Primitive::and_(destination(), source(), status); break; case Operation::OR: Primitive::or_(destination(), source(), status); break; case Operation::XOR: Primitive::xor_(destination(), source(), status); break; case Operation::NEG: Primitive::neg(source(), status); break; case Operation::NOT: Primitive::not_(source()); break; case Operation::CALLrel: Primitive::call_relative(instruction.displacement(), registers, flow_controller); return; case Operation::CALLabs: Primitive::call_absolute(destination(), flow_controller); return; case Operation::CALLfar: Primitive::call_far(instruction, flow_controller, registers, memory); return; case Operation::JMPrel: jcc(true); return; case Operation::JMPabs: Primitive::jump_absolute(destination(), flow_controller); return; case Operation::JMPfar: Primitive::jump_far(instruction, flow_controller, registers, memory); return; case Operation::JCXZ: jcc(!eCX()); return; case Operation::LOOP: Primitive::loop(eCX(), instruction.offset(), registers, flow_controller); return; case Operation::LOOPE: Primitive::loope(eCX(), instruction.offset(), registers, status, flow_controller); return; case Operation::LOOPNE: Primitive::loopne(eCX(), instruction.offset(), registers, status, flow_controller); return; case Operation::IRET: Primitive::iret(registers, flow_controller, memory, status); return; case Operation::RETnear: Primitive::ret_near(instruction, registers, flow_controller, memory); return; case Operation::RETfar: Primitive::ret_far(instruction, registers, flow_controller, memory); return; case Operation::INT: Primitive::int_(instruction.operand(), flow_controller); return; case Operation::INTO: Primitive::into(status, flow_controller); return; case Operation::SAHF: Primitive::sahf(registers.ah(), status); return; case Operation::LAHF: Primitive::lahf(registers.ah(), status); return; case Operation::LDS: if constexpr (data_size == DataSize::Word) Primitive::ld(instruction, destination(), memory, registers); return; case Operation::LES: if constexpr (data_size == DataSize::Word) Primitive::ld(instruction, destination(), memory, registers); return; case Operation::LEA: Primitive::lea(instruction, destination(), memory, registers); return; case Operation::MOV: Primitive::mov(destination(), source()); return; case Operation::JO: jcc(status.condition()); return; case Operation::JNO: jcc(!status.condition()); return; case Operation::JB: jcc(status.condition()); return; case Operation::JNB: jcc(!status.condition()); return; case Operation::JZ: jcc(status.condition()); return; case Operation::JNZ: jcc(!status.condition()); return; case Operation::JBE: jcc(status.condition()); return; case Operation::JNBE: jcc(!status.condition()); return; case Operation::JS: jcc(status.condition()); return; case Operation::JNS: jcc(!status.condition()); return; case Operation::JP: jcc(!status.condition()); return; case Operation::JNP: jcc(status.condition()); return; case Operation::JL: jcc(status.condition()); return; case Operation::JNL: jcc(!status.condition()); return; case Operation::JLE: jcc(status.condition()); return; case Operation::JNLE: jcc(!status.condition()); return; case Operation::RCL: Primitive::rcl(destination(), shift_count(), status); break; case Operation::RCR: Primitive::rcr(destination(), shift_count(), status); break; case Operation::ROL: Primitive::rol(destination(), shift_count(), status); break; case Operation::ROR: Primitive::ror(destination(), shift_count(), status); break; case Operation::SAL: Primitive::sal(destination(), shift_count(), status); break; case Operation::SAR: Primitive::sar(destination(), shift_count(), status); break; case Operation::SHR: Primitive::shr(destination(), shift_count(), status); break; case Operation::CLC: Primitive::clc(status); return; case Operation::CLD: Primitive::cld(status); return; case Operation::CLI: Primitive::cli(status); return; case Operation::STC: Primitive::stc(status); return; case Operation::STD: Primitive::std(status); return; case Operation::STI: Primitive::sti(status); return; case Operation::CMC: Primitive::cmc(status); return; case Operation::XCHG: Primitive::xchg(destination(), source()); return; case Operation::SALC: Primitive::salc(registers.al(), status); return; case Operation::SETMO: if constexpr (model == Model::i8086) { Primitive::setmo(destination(), status); } else { // TODO. } return; case Operation::SETMOC: if constexpr (model == Model::i8086) { Primitive::setmoc(destination(), registers.cl(), status); } else { // TODO. } return; case Operation::OUT: Primitive::out(port(instruction.destination().source()), pair_low(), io); return; case Operation::IN: Primitive::in(port(instruction.source().source()), pair_low(), io); return; case Operation::XLAT: Primitive::xlat(instruction, memory, registers); return; case Operation::POP: source() = Primitive::pop(memory, registers); break; case Operation::PUSH: Primitive::push(source(), memory, registers); break; case Operation::POPF: Primitive::popf(memory, registers, status); break; case Operation::PUSHF: Primitive::pushf(memory, registers, status); break; case Operation::CMPS: Primitive::cmps(instruction, eCX(), eSI(), eDI(), memory, status, flow_controller); break; case Operation::LODS: Primitive::lods(instruction, eCX(), eSI(), pair_low(), memory, status, flow_controller); break; case Operation::MOVS: Primitive::movs(instruction, eCX(), eSI(), eDI(), memory, status, flow_controller); break; case Operation::STOS: Primitive::stos(instruction, eCX(), eDI(), pair_low(), memory, status, flow_controller); break; case Operation::SCAS: Primitive::scas(instruction, eCX(), eDI(), pair_low(), memory, status, flow_controller); break; case Operation::OUTS: Primitive::outs(instruction, eCX(), registers.dx(), eSI(), memory, io, status, flow_controller); break; case Operation::INS: Primitive::outs(instruction, eCX(), registers.dx(), eDI(), memory, io, status, flow_controller); break; } // Write to memory if required to complete this operation. memory.template write_back(); } template < Model model, typename InstructionT, typename FlowControllerT, typename RegistersT, typename MemoryT, typename IOT > void perform( const InstructionT &instruction, Status &status, FlowControllerT &flow_controller, RegistersT ®isters, MemoryT &memory, IOT &io ) { // Dispatch to a function just like this that is specialised on data size. // Fetching will occur in that specialised function, per the overlapping // meaning of register names. // TODO: incorporate and propagate address size. auto size = [](DataSize operation_size, AddressSize address_size) constexpr -> int { return int(operation_size) + (int(address_size) << 2); }; switch(size(instruction.operation_size(), instruction.address_size())) { // 16-bit combinations. case size(DataSize::Byte, AddressSize::b16): perform(instruction, status, flow_controller, registers, memory, io); return; case size(DataSize::Word, AddressSize::b16): perform(instruction, status, flow_controller, registers, memory, io); return; // 32-bit combinations. case size(DataSize::Byte, AddressSize::b32): if constexpr (is_32bit(model)) { perform(instruction, status, flow_controller, registers, memory, io); return; } break; case size(DataSize::Word, AddressSize::b32): if constexpr (is_32bit(model)) { perform(instruction, status, flow_controller, registers, memory, io); return; } break; case size(DataSize::DWord, AddressSize::b16): if constexpr (is_32bit(model)) { perform(instruction, status, flow_controller, registers, memory, io); return; } break; case size(DataSize::DWord, AddressSize::b32): if constexpr (is_32bit(model)) { perform(instruction, status, flow_controller, registers, memory, io); return; } break; default: break; } // This is reachable only if the data and address size combination in use isn't available on the processor // model nominated. assert(false); } } #endif /* PerformImplementation_h */