// // Tape.cpp // Clock Signal // // Created by Thomas Harte on 24/08/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "Tape.hpp" #include "../TapeParser.hpp" #include "Utilities.hpp" using namespace StaticAnalyser::Commodore; enum class WaveType { Short, Medium, Long, Unrecognised }; enum class SymbolType { One, Zero, Word, EndOfBlock, LeadIn }; struct Header { enum { RelocatableProgram, NonRelocatableProgram, DataSequenceHeader, DataBlock, EndOfTape, Unknown } type; std::vector data; std::wstring name; std::vector raw_name; uint16_t starting_address; uint16_t ending_address; bool parity_was_valid; bool duplicate_matched; }; struct Data { std::vector data; bool parity_was_valid; bool duplicate_matched; }; class CommodoreROMTapeParser: public StaticAnalyer::TapeParser { public: CommodoreROMTapeParser(const std::shared_ptr &tape) : TapeParser(tape), _wave_period(0.0f), _previous_was_high(false), _parity_byte(0) {} /*! Advances to the next header block on the tape, then consumes, parses, and returns it. Returns @c nullptr if any wave-encoding level errors are encountered. */ std::unique_ptr
get_next_header() { std::unique_ptr
header(new Header); reset_error_flag(); // find and proceed beyond lead-in tone proceed_to_symbol(SymbolType::LeadIn); // look for landing zone proceed_to_landing_zone(true); reset_parity_byte(); // get header type uint8_t header_type = get_next_byte(); switch(header_type) { default: header->type = Header::Unknown; break; case 0x01: header->type = Header::RelocatableProgram; break; case 0x02: header->type = Header::DataBlock; break; case 0x03: header->type = Header::NonRelocatableProgram; break; case 0x04: header->type = Header::DataSequenceHeader; break; case 0x05: header->type = Header::EndOfTape; break; } // grab rest of data header->data.reserve(191); for(size_t c = 0; c < 191; c++) { header->data.push_back(get_next_byte()); } uint8_t parity_byte = get_parity_byte(); header->parity_was_valid = get_next_byte() == parity_byte; // check that the duplicate matches proceed_to_landing_zone(false); header->duplicate_matched = true; if(get_next_byte() != header_type) header->duplicate_matched = false; for(size_t c = 0; c < 191; c++) { if(header->data[c] != get_next_byte()) header->duplicate_matched = false; } if(get_next_byte() != parity_byte) header->duplicate_matched = false; // parse if this is not pure data if(header->type != Header::DataBlock) { header->starting_address = (uint16_t)(header->data[0] | (header->data[1] << 8)); header->ending_address = (uint16_t)(header->data[2] | (header->data[3] << 8)); for(size_t c = 0; c < 16; c++) { header->raw_name.push_back(header->data[4 + c]); } header->name = petscii_from_bytes(&header->raw_name[0], 16, false); } if(get_error_flag()) return nullptr; return header; } std::unique_ptr get_next_data() { std::unique_ptr data(new Data); reset_error_flag(); // find and proceed beyond lead-in tone to the next landing zone proceed_to_symbol(SymbolType::LeadIn); proceed_to_landing_zone(true); reset_parity_byte(); // accumulate until the next non-word marker is hit while(!is_at_end()) { SymbolType start_symbol = get_next_symbol(); if(start_symbol != SymbolType::Word) break; data->data.push_back(get_next_byte_contents()); } // the above has reead the parity byte to the end of the data; if it matched the calculated parity it'll now be zero data->parity_was_valid = !get_parity_byte(); // compare to the duplicate proceed_to_symbol(SymbolType::LeadIn); proceed_to_landing_zone(false); reset_parity_byte(); data->duplicate_matched = true; for(size_t c = 0; c < data->data.size(); c++) { if(get_next_byte() != data->data[c]) data->duplicate_matched = false; } // remove the captured parity data->data.erase(data->data.end()-1); if(get_error_flag()) return nullptr; return data; } void spin() { while(!is_at_end()) { SymbolType symbol = get_next_symbol(); switch(symbol) { case SymbolType::One: printf("1"); break; case SymbolType::Zero: printf("0"); break; case SymbolType::Word: printf(" "); break; case SymbolType::EndOfBlock: printf("\n"); break; case SymbolType::LeadIn: printf("-"); break; } } } private: /*! Finds and completes the next landing zone. */ void proceed_to_landing_zone(bool is_original) { uint8_t landing_zone[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; while(!is_at_end()) { memmove(landing_zone, &landing_zone[1], sizeof(uint8_t) * 8); landing_zone[8] = get_next_byte(); bool is_landing_zone = true; for(int c = 0; c < 9; c++) { if(landing_zone[c] != ((is_original ? 0x80 : 0x00) | 0x9) - c) { is_landing_zone = false; break; } } if(is_landing_zone) break; } } /*! Swallows symbols until it reaches the first instance of the required symbol, swallows that and returns. */ void proceed_to_symbol(SymbolType required_symbol) { while(!is_at_end()) { SymbolType symbol = get_next_symbol(); if(symbol == required_symbol) return; } } /*! Swallows the next byte; sets the error flag if it is not equal to @c value. */ void expect_byte(uint8_t value) { uint8_t next_byte = get_next_byte(); if(next_byte != value) set_error_flag(); } uint8_t _parity_byte; void reset_parity_byte() { _parity_byte = 0; } uint8_t get_parity_byte() { return _parity_byte; } void add_parity_byte(uint8_t byte) { _parity_byte ^= byte; } /*! Proceeds to the next word marker then returns the result of @c get_next_byte_contents. */ uint8_t get_next_byte() { proceed_to_symbol(SymbolType::Word); return get_next_byte_contents(); } /*! Reads the next nine symbols and applies a binary test to each to differentiate between ::One and not-::One. Returns a byte composed of the first eight of those as bits; sets the error flag if any symbol is not ::One and not ::Zero, or if the ninth bit is not equal to the odd parity of the other eight. */ uint8_t get_next_byte_contents() { int byte_plus_parity = 0; int c = 9; while(c--) { SymbolType next_symbol = get_next_symbol(); if((next_symbol != SymbolType::One) && (next_symbol != SymbolType::Zero)) set_error_flag(); byte_plus_parity = (byte_plus_parity >> 1) | (((next_symbol == SymbolType::One) ? 1 : 0) << 8); } int check = byte_plus_parity; check ^= (check >> 4); check ^= (check >> 2); check ^= (check >> 1); if((check&1) == (byte_plus_parity >> 8)) set_error_flag(); add_parity_byte((uint8_t)byte_plus_parity); return (uint8_t)byte_plus_parity; } /*! Returns the result of two consecutive @c get_next_byte calls, arranged in little-endian format. */ uint16_t get_next_short() { uint16_t value = get_next_byte(); value |= get_next_byte() << 8; return value; } /*! Per the contract with StaticAnalyser::TapeParser; sums time across pulses. If this pulse indicates a high to low transition, inspects the time since the last transition, to produce a long, medium, short or unrecognised wave period. */ void process_pulse(Storage::Tape::Tape::Pulse pulse) { // The Complete Commodore Inner Space Anthology, P 97, gives half-cycle lengths of: // short: 182µs => 0.000364s cycle // medium: 262µs => 0.000524s cycle // long: 342µs => 0.000684s cycle bool is_high = pulse.type == Storage::Tape::Tape::Pulse::High; if(!is_high && _previous_was_high) { if(_wave_period >= 0.000764) push_wave(WaveType::Unrecognised); else if(_wave_period >= 0.000604) push_wave(WaveType::Long); else if(_wave_period >= 0.000444) push_wave(WaveType::Medium); else if(_wave_period >= 0.000284) push_wave(WaveType::Short); else push_wave(WaveType::Unrecognised); _wave_period = 0.0f; } _wave_period += pulse.length.get_float(); _previous_was_high = is_high; } bool _previous_was_high; float _wave_period; /*! Per the contract with StaticAnalyser::TapeParser; produces any of a word marker, an end-of-block marker, a zero, a one or a lead-in symbol based on the currently captured waves. */ void inspect_waves(const std::vector &waves) { if(waves.size() < 2) return; if(waves[0] == WaveType::Long && waves[1] == WaveType::Medium) { push_symbol(SymbolType::Word, 2); return; } if(waves[0] == WaveType::Long && waves[1] == WaveType::Short) { push_symbol(SymbolType::EndOfBlock, 2); return; } if(waves[0] == WaveType::Short && waves[1] == WaveType::Medium) { push_symbol(SymbolType::Zero, 2); return; } if(waves[0] == WaveType::Medium && waves[1] == WaveType::Short) { push_symbol(SymbolType::One, 2); return; } if(waves[0] == WaveType::Short) { push_symbol(SymbolType::LeadIn, 1); return; } // Otherwise, eject at least one wave as all options are exhausted. remove_waves(1); } }; std::list StaticAnalyser::Commodore::GetFiles(const std::shared_ptr &tape) { CommodoreROMTapeParser parser(tape); std::list file_list; std::unique_ptr
header = parser.get_next_header(); while(!parser.is_at_end()) { if(!header) { header = parser.get_next_header(); continue; } switch(header->type) { case Header::DataSequenceHeader: { File new_file; new_file.name = header->name; new_file.raw_name = header->raw_name; new_file.starting_address = header->starting_address; new_file.ending_address = header->ending_address; new_file.type = File::DataSequence; new_file.data.swap(header->data); while(!parser.is_at_end()) { header = parser.get_next_header(); if(!header) continue; if(header->type != Header::DataBlock) break; std::copy(header->data.begin(), header->data.end(), std::back_inserter(new_file.data)); } file_list.push_back(new_file); } break; case Header::RelocatableProgram: case Header::NonRelocatableProgram: { std::unique_ptr data = parser.get_next_data(); if(data) { File new_file; new_file.name = header->name; new_file.raw_name = header->raw_name; new_file.starting_address = header->starting_address; new_file.ending_address = header->ending_address; new_file.data.swap(data->data); new_file.type = (header->type == Header::RelocatableProgram) ? File::RelocatableProgram : File::NonRelocatableProgram; file_list.push_back(new_file); } header = parser.get_next_header(); } break; default: header = parser.get_next_header(); break; } } return file_list; }