// // SegmentParser.cpp // Clock Signal // // Created by Thomas Harte on 04/05/2018. // Copyright 2018 Thomas Harte. All rights reserved. // #include "SegmentParser.hpp" #include "Encoder.hpp" #include using namespace Storage::Encodings::AppleGCR; namespace { const uint8_t six_and_two_unmapping[] = { /* 0x96 */ 0x00, 0x01, /* 0x98 */ 0xff, 0xff, 0x02, 0x03, 0xff, 0x04, 0x05, 0x06, /* 0xa0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x08, /* 0xa8 */ 0xff, 0xff, 0xff, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, /* 0xb0 */ 0xff, 0xff, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, /* 0xb8 */ 0xff, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, /* 0xc0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xc8 */ 0xff, 0xff, 0xff, 0x1b, 0xff, 0x1c, 0x1d, 0x1e, /* 0xd0 */ 0xff, 0xff, 0xff, 0x1f, 0xff, 0xff, 0x20, 0x21, /* 0xd8 */ 0xff, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, /* 0xe0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0x29, 0x2a, 0x2b, /* 0xe8 */ 0xff, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* 0xf0 */ 0xff, 0xff, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, /* 0xf8 */ 0xff, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, }; uint8_t unmap_six_and_two(uint8_t source) { if(source < 0x96) return 0xff; return six_and_two_unmapping[source - 0x96]; } const uint8_t five_and_three_unmapping[] = { /* 0xab */ 0x00, 0xff, 0x01, 0x02, 0x03, /* 0xb0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0x05, 0x06, /* 0xb8 */ 0xff, 0xff, 0x07, 0x08, 0xff, 0x09, 0x0a, 0x0b, /* 0xc0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xc8 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xd0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0c, 0x0d, /* 0xd8 */ 0xff, 0xff, 0x0e, 0x0f, 0xff, 0x10, 0x11, 0x12, /* 0xe0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xe8 */ 0xff, 0xff, 0x13, 0x14, 0xff, 0x15, 0x16, 0x17, /* 0xf0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0x18, 0x19, 0x1a, /* 0xf8 */ 0xff, 0xff, 0x1b, 0x1c, 0xff, 0x1d, 0x1e, 0x1f, }; uint8_t unmap_five_and_three(uint8_t source) { if(source < 0xab) return 0xff; return five_and_three_unmapping[source - 0xab]; } std::unique_ptr decode_macintosh_sector(const std::array *header, const std::unique_ptr &original) { // There must be a header and at least 704 bytes to decode from. if(!header || original->data.size() < 704) return nullptr; // Attempt a six-and-two unmapping of the header. std::array decoded_header; for(size_t c = 0; c < decoded_header.size(); ++c) { decoded_header[c] = unmap_six_and_two((*header)[c]); if(decoded_header[c] == 0xff) { return nullptr; } } // Allocate a sector. auto sector = std::make_unique(); sector->data.resize(704); // Test the checksum. if(decoded_header[4] != (decoded_header[0] ^ decoded_header[1] ^ decoded_header[2] ^ decoded_header[3])) sector->has_header_checksum_error = true; // Decode the header. sector->address.track = uint8_t(decoded_header[0] | ((decoded_header[2]&0x1f) << 6)); sector->address.sector = decoded_header[1]; sector->address.format = decoded_header[3]; sector->address.is_side_two = decoded_header[2] & 0x20; // Reverse the GCR encoding of the sector contents to get back to 6-bit data. for(size_t index = 0; index < sector->data.size(); ++index) { sector->data[index] = unmap_six_and_two(original->data[index]); if(sector->data[index] == 0xff) { return nullptr; } } // The first byte in the sector is a repeat of the sector number; test it // for correctness. if(sector->data[0] != sector->address.sector) { return nullptr; } // Cf. the corresponding section of Encoder.cpp for logic below. int checksum[3] = {0, 0, 0}; for(size_t c = 0; c < 175; ++c) { // Calculate the rolling checcksum in order to decode the bytes. checksum[0] = (checksum[0] << 1) | (checksum[0] >> 7); // All offsets are +1 below, to skip the initial sector number duplicate. const uint8_t top_bits = sector->data[1 + c*4]; // Decode first byte. sector->data[0 + c * 3] = uint8_t((sector->data[2 + c*4] + ((top_bits & 0x30) << 2)) ^ checksum[0]); checksum[2] += sector->data[0 + c * 3] + (checksum[0] >> 8); // Decode second byte; sector->data[1 + c * 3] = uint8_t((sector->data[3 + c*4] + ((top_bits & 0x0c) << 4)) ^ checksum[2]); checksum[1] += sector->data[1 + c * 3] + (checksum[2] >> 8); // Decode third byte, if there is one. if(c != 174) { sector->data[2 + c * 3] = uint8_t((sector->data[4 + c*4] + ((top_bits & 0x03) << 6)) ^ checksum[1]); checksum[0] += sector->data[2 + c * 3] + (checksum[1] >> 8); } // Reset carries. checksum[0] &= 0xff; checksum[1] &= 0xff; checksum[2] &= 0xff; } // Test the checksum. if( checksum[0] != uint8_t(sector->data[703] + ((sector->data[700] & 0x03) << 6)) || checksum[1] != uint8_t(sector->data[702] + ((sector->data[700] & 0x0c) << 4)) || checksum[2] != uint8_t(sector->data[701] + ((sector->data[700] & 0x30) << 2)) ) sector->has_data_checksum_error = true; // Report success. sector->data.resize(524); sector->encoding = Sector::Encoding::Macintosh; return sector; } std::unique_ptr decode_appleii_sector(const std::array *header, const std::unique_ptr &original, bool is_five_and_three) { // There must be at least 411 bytes to decode a five-and-three sector from; // there must be only 343 if this is a six-and-two sector. const size_t data_size = is_five_and_three ? 411 : 343; if(original->data.size() < data_size) return nullptr; // Allocate a sector. auto sector = std::make_unique(); sector->data.resize(data_size); // If there is a header, check for apparent four and four encoding. if(header) { uint_fast8_t header_mask = 0xff; for(auto c : *header) header_mask &= c; header_mask &= 0xaa; if(header_mask != 0xaa) return nullptr; // Fill the header fields. sector->address.volume = (((*header)[0] << 1) | 1) & (*header)[1]; sector->address.track = (((*header)[2] << 1) | 1) & (*header)[3]; sector->address.sector = (((*header)[4] << 1) | 1) & (*header)[5]; // Check the header checksum. const uint_fast8_t checksum = (((*header)[6] << 1) | 1) & (*header)[7]; if(checksum != (sector->address.volume^sector->address.track^sector->address.sector)) return nullptr; } // Unmap the sector contents. for(size_t index = 0; index < data_size; ++index) { sector->data[index] = is_five_and_three ? unmap_five_and_three(original->data[index]) : unmap_six_and_two(original->data[index]); if(sector->data[index] == 0xff) { return nullptr; } } // Undo the XOR step on sector contents, then check and discard the checksum. for(std::size_t c = 1; c < sector->data.size(); ++c) { sector->data[c] ^= sector->data[c-1]; } if(sector->data.back()) return nullptr; sector->data.resize(sector->data.size() - 1); if(is_five_and_three) { // TODO: the below is almost certainly incorrect; Beneath Apple DOS partly documents // the process, enough to give the basic outline below of how five source bytes are // mapped to eight five-bit quantities, but isn't clear on the order those bytes will // end up in on disk. std::vector buffer(256); for(size_t c = 0; c < 0x33; ++c) { const uint8_t *const base = §or->data[0x032 - c]; buffer[(c * 5) + 0] = uint8_t((base[0x000] << 3) | (base[0x100] >> 2)); buffer[(c * 5) + 1] = uint8_t((base[0x033] << 3) | (base[0x133] >> 2)); buffer[(c * 5) + 2] = uint8_t((base[0x066] << 3) | (base[0x166] >> 2)); buffer[(c * 5) + 3] = uint8_t((base[0x099] << 3) | ((base[0x100] & 2) << 1) | (base[0x133] & 2) | ((base[0x166] & 2) >> 1)); buffer[(c * 5) + 4] = uint8_t((base[0x0cc] << 3) | ((base[0x100] & 1) << 2) | ((base[0x133] & 1) << 1) | (base[0x166] & 1)); } buffer[255] = uint8_t((sector->data[0x0ff] << 3) | (sector->data[0x199] >> 2)); sector->data = std::move(buffer); sector->encoding = Sector::Encoding::FiveAndThree; } else { // Undo the 6 and 2 mapping. constexpr uint8_t bit_reverse[] = {0, 2, 1, 3}; const auto unmap = [&](std::size_t byte, std::size_t nibble, int shift) { sector->data[86 + byte] = uint8_t( (sector->data[86 + byte] << 2) | bit_reverse[(sector->data[nibble] >> shift)&3] ); }; for(std::size_t c = 0; c < 84; ++c) { unmap(c, c, 0); unmap(c+86, c, 2); unmap(c+172, c, 4); } unmap(84, 84, 0); unmap(170, 84, 2); unmap(85, 85, 0); unmap(171, 85, 2); // Throw away the collection of two-bit chunks from the start of the sector. sector->data.erase(sector->data.begin(), sector->data.end() - 256); sector->encoding = Sector::Encoding::SixAndTwo; } // Return successfully. return sector; } } std::map Storage::Encodings::AppleGCR::sectors_from_segment(const Disk::PCMSegment &segment) { std::map result; uint_fast8_t shift_register = 0; const std::size_t scanning_sentinel = std::numeric_limits::max(); std::unique_ptr new_sector; std::size_t sector_location = 0; std::size_t pointer = scanning_sentinel; std::array header{{0, 0, 0, 0, 0, 0, 0, 0}}; std::array scanner{{0, 0, 0}}; // Scan the track while either all bits haven't been seen yet, or a potential // sector is still being parsed. size_t bit = 0; int header_delay = 0; bool is_five_and_three = false; bool has_header = false; while(bit < segment.data.size() || pointer != scanning_sentinel || header_delay) { shift_register = uint_fast8_t((shift_register << 1) | (segment.data[bit % segment.data.size()] ? 1 : 0)); ++bit; // Apple GCR parsing: bytes always have the top bit set. if(!(shift_register&0x80)) continue; if(header_delay) --header_delay; // Grab the byte. const uint_fast8_t value = shift_register; shift_register = 0; scanner[0] = scanner[1]; scanner[1] = scanner[2]; scanner[2] = value; if(pointer == scanning_sentinel) { if( scanner[0] == header_prologue[0] && scanner[1] == header_prologue[1] && ( scanner[2] == five_and_three_header_prologue[2] || scanner[2] == header_prologue[2] || scanner[2] == data_prologue[2] ) ) { pointer = 0; if(scanner[2] != data_prologue[2]) { is_five_and_three = scanner[2] == five_and_three_header_prologue[2]; } // If this is the start of a data section, and at least // one header has been witnessed, start a sector. if(scanner[2] == data_prologue[2]) { new_sector = std::make_unique(); new_sector->data.reserve(710); } else { // i.e. the third symbol is from either of the header prologues. sector_location = size_t(bit % segment.data.size()); header_delay = 200; // Allow up to 200 bytes to find the body, if the // track split comes in between. has_header = true; } } } else { if(new_sector) { // Check whether the value just read is a legal GCR byte, for this sector; // if not, or if const bool is_invalid = is_five_and_three ? (unmap_five_and_three(value) == 0xff) : (unmap_six_and_two(value) == 0xff); if(is_invalid || new_sector->data.size() >= 704) { // The second byte of the standard epilogue is 'illegal', as is the first byte of // all prologues. So either a whole sector has been captured up to now, or it hasn't. // Move the sector elsewhere for processing; there's definitely no way to proceed with // the prospective sector if it doesn't parse. std::unique_ptr sector = std::move(new_sector); new_sector.reset(); pointer = scanning_sentinel; const bool had_header = has_header; has_header = false; // Potentially this is a Macintosh sector. auto macintosh_sector = decode_macintosh_sector(had_header ? &header : nullptr, sector); if(macintosh_sector) { result.insert(std::make_pair(sector_location, std::move(*macintosh_sector))); continue; } // Apple II then? auto appleii_sector = decode_appleii_sector(had_header ? &header : nullptr, sector, is_five_and_three); if(appleii_sector) { result.insert(std::make_pair(sector_location, std::move(*appleii_sector))); } } else { new_sector->data.push_back(value); } } else { // Just capture the header in place; it'll be decoded // once a whole sector has been read. header[pointer] = value; ++pointer; if(pointer == 8) { pointer = scanning_sentinel; } } } } return result; }