// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include "CRTOpenGL.hpp" #include #include #include using namespace Outputs::CRT; void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate) { openGL_output_builder_.set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator); const unsigned int syncCapacityLineChargeThreshold = 2; const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." time_multiplier_ = IntermediateBufferWidth / cycles_per_line; phase_denominator_ = cycles_per_line * colour_cycle_denominator * time_multiplier_; phase_numerator_ = 0; colour_cycle_numerator_ = colour_cycle_numerator; phase_alternates_ = should_alternate; is_alernate_line_ &= phase_alternates_; unsigned int multiplied_cycles_per_line = cycles_per_line * time_multiplier_; // generate timing values implied by the given arbuments sync_capacitor_charge_threshold_ = ((int)(syncCapacityLineChargeThreshold * cycles_per_line) * 3) / 4; // create the two flywheels horizontal_flywheel_.reset(new Flywheel(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 6)); vertical_flywheel_.reset(new Flywheel(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3)); // figure out the divisor necessary to get the horizontal flywheel into a 16-bit range unsigned int real_clock_scan_period = (multiplied_cycles_per_line * height_of_display) / (time_multiplier_ * common_output_divisor_); vertical_flywheel_output_divider_ = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (time_multiplier_ * common_output_divisor_)); openGL_output_builder_.set_timing(cycles_per_line, multiplied_cycles_per_line, height_of_display, horizontal_flywheel_->get_scan_period(), vertical_flywheel_->get_scan_period(), vertical_flywheel_output_divider_); } void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) { switch(displayType) { case DisplayType::PAL50: set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 709379, 2500, true); // i.e. 283.7516 break; case DisplayType::NTSC60: set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 455, 2, false); // i.e. 227.5 break; } } CRT::CRT(unsigned int common_output_divisor, unsigned int buffer_depth) : sync_capacitor_charge_level_(0), is_receiving_sync_(false), sync_period_(0), common_output_divisor_(common_output_divisor), is_writing_composite_run_(false), delegate_(nullptr), frames_since_last_delegate_call_(0), openGL_output_builder_(buffer_depth), is_alernate_line_(false) {} CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate, unsigned int buffer_depth) : CRT(common_output_divisor, buffer_depth) { set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, should_alternate); } CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor, buffer_depth) { set_new_display_type(cycles_per_line, displayType); } #pragma mark - Sync loop Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); } Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); } #define output_x1() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 0]) #define output_x2() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 2]) #define output_position_y() (*(uint16_t *)&next_run[OutputVertexOffsetOfVertical + 0]) #define output_tex_y() (*(uint16_t *)&next_run[OutputVertexOffsetOfVertical + 2]) #define source_input_position_x1() (*(uint16_t *)&next_run[SourceVertexOffsetOfInputStart + 0]) #define source_input_position_y() (*(uint16_t *)&next_run[SourceVertexOffsetOfInputStart + 2]) #define source_input_position_x2() (*(uint16_t *)&next_run[SourceVertexOffsetOfEnds + 0]) #define source_output_position_x1() (*(uint16_t *)&next_run[SourceVertexOffsetOfOutputStart + 0]) #define source_output_position_y() (*(uint16_t *)&next_run[SourceVertexOffsetOfOutputStart + 2]) #define source_output_position_x2() (*(uint16_t *)&next_run[SourceVertexOffsetOfEnds + 2]) #define source_phase() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 0] #define source_amplitude() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 2] void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type) { std::unique_lock output_lock = openGL_output_builder_.get_output_lock(); number_of_cycles *= time_multiplier_; bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data)); while(number_of_cycles) { unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event; Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); phase_numerator_ += next_run_length * colour_cycle_numerator_; phase_numerator_ %= phase_denominator_; hsync_requested = false; vsync_requested = false; bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace()); uint8_t *next_run = nullptr; if(is_output_segment && !openGL_output_builder_.composite_output_buffer_is_full()) { next_run = openGL_output_builder_.array_builder.get_input_storage(SourceVertexSize); } if(next_run) { // output_y and texture locations will be written later; we won't necessarily know what it is outside of the locked region source_output_position_x1() = (uint16_t)horizontal_flywheel_->get_current_output_position(); source_phase() = colour_burst_phase_; source_amplitude() = colour_burst_amplitude_; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; // react to the incoming event... horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); if(next_run) { source_output_position_x2() = (uint16_t)horizontal_flywheel_->get_current_output_position(); } // if this is horizontal retrace then advance the output line counter and bookend an output run Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None; if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event; if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event; bool needs_endpoint = (honoured_event == Flywheel::SyncEvent::StartRetrace && is_writing_composite_run_) || (honoured_event == Flywheel::SyncEvent::EndRetrace && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace()); if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) is_alernate_line_ ^= phase_alternates_; if(needs_endpoint) { if( !openGL_output_builder_.array_builder.is_full() && !openGL_output_builder_.composite_output_buffer_is_full()) { if(!is_writing_composite_run_) { output_run_.x1 = (uint16_t)horizontal_flywheel_->get_current_output_position(); output_run_.y = (uint16_t)(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_); } else { // Get and write all those previously unwritten output ys const uint16_t output_y = openGL_output_builder_.get_composite_output_y(); // Construct the output run uint8_t *next_run = openGL_output_builder_.array_builder.get_output_storage(OutputVertexSize); if(next_run) { output_x1() = output_run_.x1; output_position_y() = output_run_.y; output_tex_y() = output_y; output_x2() = (uint16_t)horizontal_flywheel_->get_current_output_position(); } openGL_output_builder_.array_builder.flush( [output_y, this] (uint8_t *input_buffer, size_t input_size, uint8_t *output_buffer, size_t output_size) { openGL_output_builder_.texture_builder.flush( [output_y, input_buffer] (const std::vector &write_areas, size_t number_of_write_areas) { for(size_t run = 0; run < number_of_write_areas; run++) { *(uint16_t *)&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 0] = write_areas[run].x; *(uint16_t *)&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 2] = write_areas[run].y; *(uint16_t *)&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfEnds + 0] = write_areas[run].x + write_areas[run].length; } }); for(size_t position = 0; position < input_size; position += SourceVertexSize) { (*(uint16_t *)&input_buffer[position + SourceVertexOffsetOfOutputStart + 2]) = output_y; } }); colour_burst_amplitude_ = 0; } is_writing_composite_run_ ^= true; } } if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) { openGL_output_builder_.increment_composite_output_y(); } // if this is vertical retrace then adcance a field if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) { if(delegate_) { frames_since_last_delegate_call_++; if(frames_since_last_delegate_call_ == 20) { output_lock.unlock(); delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises()); output_lock.lock(); frames_since_last_delegate_call_ = 0; } } } } } #undef output_x1 #undef output_x2 #undef output_position_y #undef output_tex_y #undef source_input_position_x1 #undef source_input_position_y #undef source_input_position_x2 #undef source_output_position_x1 #undef source_output_position_y #undef source_output_position_x2 #undef source_phase #undef source_amplitude #undef source_phase_time #pragma mark - stream feeding methods void CRT::output_scan(const Scan *const scan) { const bool this_is_sync = (scan->type == Scan::Type::Sync); const bool is_trailing_edge = (is_receiving_sync_ && !this_is_sync); const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync); is_receiving_sync_ = this_is_sync; // This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not // recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek // the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal // flywheel. I'm currently unclear whether this is an accurate solution to this problem. const bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync(); const bool vsync_requested = is_trailing_edge && (sync_capacitor_charge_level_ >= sync_capacitor_charge_threshold_); // simplified colour burst logic: if it's within the back porch we'll take it if(scan->type == Scan::Type::ColourBurst) { if(!colour_burst_amplitude_ && horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6) { unsigned int position_phase = (horizontal_flywheel_->get_current_time() * colour_cycle_numerator_ * 256) / phase_denominator_; colour_burst_phase_ = (position_phase + scan->phase) & 255; colour_burst_amplitude_ = scan->amplitude; colour_burst_phase_ = (colour_burst_phase_ & ~63) + 32; } } // TODO: inspect raw data for potential colour burst if required sync_period_ = is_receiving_sync_ ? (sync_period_ + scan->number_of_cycles) : 0; advance_cycles(scan->number_of_cycles, hsync_requested, vsync_requested, scan->type); // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if(this_is_sync) sync_capacitor_charge_level_ += scan->number_of_cycles; else sync_capacitor_charge_level_ = std::max(sync_capacitor_charge_level_ - (int)scan->number_of_cycles, 0); } /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(unsigned int number_of_cycles) { Scan scan{ .type = Scan::Type::Sync, .number_of_cycles = number_of_cycles }; output_scan(&scan); } void CRT::output_blank(unsigned int number_of_cycles) { Scan scan { .type = Scan::Type::Blank, .number_of_cycles = number_of_cycles }; output_scan(&scan); } void CRT::output_level(unsigned int number_of_cycles) { Scan scan { .type = Scan::Type::Level, .number_of_cycles = number_of_cycles, }; output_scan(&scan); } void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude) { Scan scan { .type = Scan::Type::ColourBurst, .number_of_cycles = number_of_cycles, .phase = phase, .amplitude = amplitude }; output_scan(&scan); } void CRT::output_default_colour_burst(unsigned int number_of_cycles) { Scan scan { .type = Scan::Type::ColourBurst, .number_of_cycles = number_of_cycles, .phase = (uint8_t)((phase_numerator_ * 256) / phase_denominator_ + (is_alernate_line_ ? 128 : 0)), .amplitude = 32 }; output_scan(&scan); } void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider) { openGL_output_builder_.texture_builder.reduce_previous_allocation_to(number_of_cycles / source_divider); Scan scan { .type = Scan::Type::Data, .number_of_cycles = number_of_cycles, }; output_scan(&scan); } Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) { first_cycle_after_sync *= time_multiplier_; number_of_cycles *= time_multiplier_; first_line_after_sync -= 2; number_of_lines += 4; // determine prima facie x extent unsigned int horizontal_period = horizontal_flywheel_->get_standard_period(); unsigned int horizontal_scan_period = horizontal_flywheel_->get_scan_period(); unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period; // make sure that the requested range is visible if(first_cycle_after_sync < horizontal_retrace_period) first_cycle_after_sync = (int)horizontal_retrace_period; if(first_cycle_after_sync + number_of_cycles > horizontal_scan_period) number_of_cycles = (int)(horizontal_scan_period - (unsigned)first_cycle_after_sync); float start_x = (float)((unsigned)first_cycle_after_sync - horizontal_retrace_period) / (float)horizontal_scan_period; float width = (float)number_of_cycles / (float)horizontal_scan_period; // determine prima facie y extent unsigned int vertical_period = vertical_flywheel_->get_standard_period(); unsigned int vertical_scan_period = vertical_flywheel_->get_scan_period(); unsigned int vertical_retrace_period = vertical_period - vertical_scan_period; // make sure that the requested range is visible // if((unsigned)first_line_after_sync * horizontal_period < vertical_retrace_period) // first_line_after_sync = (vertical_retrace_period + horizontal_period - 1) / horizontal_period; // if((first_line_after_sync + number_of_lines) * horizontal_period > vertical_scan_period) // number_of_lines = (int)(horizontal_scan_period - (unsigned)first_cycle_after_sync); float start_y = (float)(((unsigned)first_line_after_sync * horizontal_period) - vertical_retrace_period) / (float)vertical_scan_period; float height = (float)((unsigned)number_of_lines * horizontal_period) / vertical_scan_period; // adjust to ensure aspect ratio is correct float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f); float ideal_width = height * adjusted_aspect_ratio; if(ideal_width > width) { start_x -= (ideal_width - width) * 0.5f; width = ideal_width; } else { float ideal_height = width / adjusted_aspect_ratio; start_y -= (ideal_height - height) * 0.5f; height = ideal_height; } return Rect(start_x, start_y, width, height); }