// // MemoryController.hpp // Clock Signal // // Created by Thomas Harte on 20/03/2024. // Copyright © 2024 Thomas Harte. All rights reserved. // #pragma once #include "InputOutputController.hpp" #include "Video.hpp" #include "Sound.hpp" #include "../../../InstructionSets/ARM/Registers.hpp" #include "../../../Outputs/Log.hpp" #include "../../../Activity/Observer.hpp" namespace Archimedes { /// Provides the mask with all bits set in the range [start, end], where start must be >= end. template struct BitMask { static_assert(start >= end); static constexpr uint32_t value = ((1 << (start + 1)) - 1) - ((1 << end) - 1); }; static_assert(BitMask<0, 0>::value == 1); static_assert(BitMask<1, 1>::value == 2); static_assert(BitMask<15, 15>::value == 32768); static_assert(BitMask<15, 0>::value == 0xffff); static_assert(BitMask<15, 14>::value == 49152); /// Models the MEMC, making this the Archimedes bus. Owns various other chips on the bus as a result. template struct MemoryController { MemoryController(InterruptObserverT &observer, ClockRateObserverT &clock_rate_observer) : ioc_(observer, clock_rate_observer, ram_.data()) { read_zones_[0] = ReadZone::HighROM; // Temporarily put high ROM at address 0. // TODO: could I just copy it in? Or, at least, // could I detect at ROM loading time whether I can? } int interrupt_mask() const { return ioc_.interrupt_mask(); } void set_rom(const std::vector &rom) { if(rom_.size() % rom.size() || rom.size() > rom_.size()) { // TODO: throw. return; } // Copy in as many times as it'll fit. std::size_t base = 0; while(base < rom_.size()) { std::copy( rom.begin(), rom.end(), rom_.begin() + base); base += rom.size(); } } template uint32_t aligned(uint32_t address) { if constexpr (std::is_same_v) { return address & static_cast(~3); } return address; } template bool write(uint32_t address, IntT source, InstructionSet::ARM::Mode, bool trans) { switch(write_zones_[(address >> 21) & 31]) { case WriteZone::LogicallyMappedRAM: { const auto item = logical_ram(address, trans); if(item < reinterpret_cast(ram_.data())) { return false; } *item = source; } break; case WriteZone::PhysicallyMappedRAM: if(trans) return false; physical_ram(address) = source; break; case WriteZone::DMAAndMEMC: { if(trans) return false; const auto buffer_address = [](uint32_t source) -> uint32_t { return (source & 0x1'fffc) << 2; }; // The MEMC itself isn't on the data bus; all values below should be taken from `address`. switch((address >> 17) & 0b111) { case 0b000: ioc_.video().set_frame_start(buffer_address(address)); break; case 0b001: ioc_.video().set_buffer_start(buffer_address(address)); break; case 0b010: ioc_.video().set_buffer_end(buffer_address(address)); break; case 0b011: ioc_.video().set_cursor_start(buffer_address(address)); break; case 0b100: ioc_.sound().set_next_start(buffer_address(address)); break; case 0b101: ioc_.sound().set_next_end(buffer_address(address)); break; case 0b110: ioc_.sound().swap(); break; case 0b111: os_mode_ = address & (1 << 12); sound_dma_enable_ = address & (1 << 11); video_dma_enable_ = address & (1 << 10); ioc_.sound().set_dma_enabled(sound_dma_enable_); ioc_.video().set_dma_enabled(video_dma_enable_); switch((address >> 8) & 3) { default: dynamic_ram_refresh_ = DynamicRAMRefresh::None; break; case 0b01: case 0b11: dynamic_ram_refresh_ = DynamicRAMRefresh((address >> 8) & 3); break; } high_rom_access_time_ = ROMAccessTime((address >> 6) & 3); low_rom_access_time_ = ROMAccessTime((address >> 4) & 3); page_size_ = PageSize((address >> 2) & 3); switch(page_size_) { default: case PageSize::kb4: page_address_shift_ = 12; page_adddress_mask_ = 0x0fff; break; case PageSize::kb8: page_address_shift_ = 13; page_adddress_mask_ = 0x1fff; break; case PageSize::kb16: page_address_shift_ = 14; page_adddress_mask_ = 0x3fff; break; case PageSize::kb32: page_address_shift_ = 15; page_adddress_mask_ = 0x7fff; break; } logger.info().append("MEMC Control: %08x -> OS:%d sound:%d video:%d refresh:%d high:%d low:%d size:%d", address, os_mode_, sound_dma_enable_, video_dma_enable_, dynamic_ram_refresh_, high_rom_access_time_, low_rom_access_time_, page_size_); map_dirty_ = true; break; } } break; case WriteZone::IOControllers: if(trans) return false; ioc_.template write(address, source); break; case WriteZone::VideoController: if(trans) return false; // TODO: handle byte writes correctly. ioc_.video().write(source); break; case WriteZone::AddressTranslator: if(trans) return false; // printf("Translator write at %08x; replaces %08x\n", address, pages_[address & 0x7f]); pages_[address & 0x7f] = address; map_dirty_ = true; break; } return true; } template bool read(uint32_t address, IntT &source, bool trans) { switch(read_zones_[(address >> 21) & 31]) { case ReadZone::LogicallyMappedRAM: { const auto item = logical_ram(address, trans); if(item < reinterpret_cast(ram_.data())) { return false; } source = *item; } break; case ReadZone::HighROM: // Real test is: require A24=A25=0, then A25=1. read_zones_[0] = ReadZone::LogicallyMappedRAM; source = high_rom(address); break; case ReadZone::PhysicallyMappedRAM: if(trans) return false; source = physical_ram(address); break; case ReadZone::LowROM: // logger.error().append("TODO: Low ROM read from %08x", address); source = IntT(~0); break; case ReadZone::IOControllers: if(trans) return false; ioc_.template read(address, source); break; } return true; } template bool read(uint32_t address, IntT &source, InstructionSet::ARM::Mode, bool trans) { return read(address, source, trans); } // // Expose various IOC-owned things. // void tick_timers() { ioc_.tick_timers(); } void tick_floppy(int clock_multiplier) { ioc_.tick_floppy(clock_multiplier); } void set_disk(std::shared_ptr disk, size_t drive) { ioc_.set_disk(disk, drive); } Outputs::Speaker::Speaker *speaker() { return ioc_.sound().speaker(); } auto &sound() { return ioc_.sound(); } const auto &sound() const { return ioc_.sound(); } auto &video() { return ioc_.video(); } const auto &video() const { return ioc_.video(); } auto &keyboard() { return ioc_.keyboard(); } const auto &keyboard() const { return ioc_.keyboard(); } void set_activity_observer(Activity::Observer *observer) { ioc_.set_activity_observer(observer); } private: Log::Logger logger; enum class ReadZone { LogicallyMappedRAM, PhysicallyMappedRAM, IOControllers, LowROM, HighROM, }; enum class WriteZone { LogicallyMappedRAM, PhysicallyMappedRAM, IOControllers, VideoController, DMAAndMEMC, AddressTranslator, }; template using Zone = std::conditional_t; template static std::array, 0x20> zones() { std::array, 0x20> zones{}; for(size_t c = 0; c < zones.size(); c++) { const auto address = c << 21; if(address < 0x200'0000) { zones[c] = Zone::LogicallyMappedRAM; } else if(address < 0x300'0000) { zones[c] = Zone::PhysicallyMappedRAM; } else if(address < 0x340'0000) { zones[c] = Zone::IOControllers; } else if(address < 0x360'0000) { if constexpr (is_read) { zones[c] = Zone::LowROM; } else { zones[c] = Zone::VideoController; } } else if(address < 0x380'0000) { if constexpr (is_read) { zones[c] = Zone::LowROM; } else { zones[c] = Zone::DMAAndMEMC; } } else { if constexpr (is_read) { zones[c] = Zone::HighROM; } else { zones[c] = Zone::AddressTranslator; } } } return zones; } bool has_moved_rom_ = false; std::array rom_; std::array ram_{}; InputOutputController ioc_; template IntT &physical_ram(uint32_t address) { address = aligned(address); address &= (ram_.size() - 1); return *reinterpret_cast(&ram_[address]); } template IntT &high_rom(uint32_t address) { address = aligned(address); return *reinterpret_cast(&rom_[address & (rom_.size() - 1)]); } std::array read_zones_ = zones(); const std::array write_zones_ = zones(); // Control register values. bool os_mode_ = false; bool sound_dma_enable_ = false; bool video_dma_enable_ = false; // "Unaffected" by reset, so here picked arbitrarily. enum class DynamicRAMRefresh { None = 0b00, DuringFlyback = 0b01, Continuous = 0b11, } dynamic_ram_refresh_ = DynamicRAMRefresh::None; // State at reset is undefined; constrain to a valid enum value. enum class ROMAccessTime { ns450 = 0b00, ns325 = 0b01, ns200 = 0b10, ns200with60nsNibble = 0b11, } high_rom_access_time_ = ROMAccessTime::ns450, low_rom_access_time_ = ROMAccessTime::ns450; enum class PageSize { kb4 = 0b00, kb8 = 0b01, kb16 = 0b10, kb32 = 0b11, } page_size_ = PageSize::kb4; int page_address_shift_ = 12; uint32_t page_adddress_mask_ = 0xffff; // Address translator. // // MEMC contains one entry per a physical page number, indicating where it goes logically. // Any logical access is tested against all 128 mappings. So that's backwards compared to // the ideal for an emulator, which would map from logical to physical, even if a lot more // compact — there are always 128 physical pages; there are up to 8192 logical pages. // // So captured here are both the physical -> logical map as representative of the real // hardware, and the reverse logical -> physical map, which is built (and rebuilt, and rebuilt) // from the other. // Physical to logical mapping. std::array pages_{}; // Logical to physical mapping; this is divided by 'access mode' // (i.e. the combination of read/write, trans and OS mode flags, // as multipliexed by the @c mapping() function) because mapping // varies by mode — not just in terms of restricting access, but // actually presenting different memory. using MapTarget = std::array; std::array mapping_; template MapTarget &mapping(bool trans, bool os_mode) { const size_t index = (is_read ? 1 : 0) | (os_mode ? 2 : 0) | ((trans && !os_mode) ? 4 : 0); return mapping_[index]; } bool map_dirty_ = true; /// @returns A pointer to somewhere in @c ram_ if RAM is mapped to this area, or a pointer to somewhere lower than @c ram_.data() otherwise. template IntT *logical_ram(uint32_t address, bool trans) { // Possibly TODO: this recompute-if-dirty flag is supposed to ameliorate for an expensive // mapping process. It can be eliminated when the process is improved. if(map_dirty_) { update_mapping(); map_dirty_ = false; } address = aligned(address); address &= 0x1ff'ffff; const size_t page = address >> page_address_shift_; const auto &map = mapping(trans, os_mode_); address &= page_adddress_mask_; return reinterpret_cast(&map[page][address]); } void update_mapping() { // For each physical page, project it into logical space. switch(page_size_) { default: case PageSize::kb4: update_mapping(); break; case PageSize::kb8: update_mapping(); break; case PageSize::kb16: update_mapping(); break; case PageSize::kb32: update_mapping(); break; } } template void update_mapping() { // Clear all logical mappings. for(auto &map: mapping_) { // Seed all pointers to an address sufficiently far lower than the beginning of RAM as to mark // the entire page as unmapped no matter what offset is added. std::fill(map.begin(), map.end(), ram_.data() - 32768); } // For each physical page, project it into logical space // and store it. for(const auto page: pages_) { uint32_t physical, logical; switch(size) { case PageSize::kb4: // 4kb: // A[6:0] -> PPN[6:0] // A[11:10] -> LPN[12:11]; A[22:12] -> LPN[10:0] i.e. 8192 logical pages physical = page & BitMask<6, 0>::value; physical <<= 12; logical = (page & BitMask<11, 10>::value) << 1; logical |= (page & BitMask<22, 12>::value) >> 12; break; case PageSize::kb8: // 8kb: // A[0] -> PPN[6]; A[6:1] -> PPN[5:0] // A[11:10] -> LPN[11:10]; A[22:13] -> LPN[9:0] i.e. 4096 logical pages physical = (page & BitMask<0, 0>::value) << 6; physical |= (page & BitMask<6, 1>::value) >> 1; physical <<= 13; logical = page & BitMask<11, 10>::value; logical |= (page & BitMask<22, 13>::value) >> 13; break; case PageSize::kb16: // 16kb: // A[1:0] -> PPN[6:5]; A[6:2] -> PPN[4:0] // A[11:10] -> LPN[10:9]; A[22:14] -> LPN[8:0] i.e. 2048 logical pages physical = (page & BitMask<1, 0>::value) << 5; physical |= (page & BitMask<6, 2>::value) >> 2; physical <<= 14; logical = (page & BitMask<11, 10>::value) >> 1; logical |= (page & BitMask<22, 14>::value) >> 14; break; case PageSize::kb32: // 32kb: // A[1] -> PPN[6]; A[2] -> PPN[5]; A[0] -> PPN[4]; A[6:3] -> PPN[3:0] // A[11:10] -> LPN[9:8]; A[22:15] -> LPN[7:0] i.e. 1024 logical pages physical = (page & BitMask<1, 1>::value) << 5; physical |= (page & BitMask<2, 2>::value) << 3; physical |= (page & BitMask<0, 0>::value) << 4; physical |= (page & BitMask<6, 3>::value) >> 3; physical <<= 15; logical = (page & BitMask<11, 10>::value) >> 2; logical |= (page & BitMask<22, 15>::value) >> 15; break; } // printf("%08x => physical %d -> logical %d\n", page, (physical >> 15), logical); // TODO: consider clashes. // TODO: what if there's less than 4mb present? const auto target = &ram_[physical]; const auto set_supervisor = [&](bool read, bool write) { if(read) mapping(false, false)[logical] = target; if(write) mapping(false, false)[logical] = target; }; const auto set_os = [&](bool read, bool write) { if(read) mapping(true, true)[logical] = target; if(write) mapping(true, true)[logical] = target; }; const auto set_user = [&](bool read, bool write) { if(read) mapping(true, false)[logical] = target; if(write) mapping(true, false)[logical] = target; }; set_supervisor(true, true); switch((page >> 8) & 3) { case 0b00: set_os(true, true); set_user(true, true); break; case 0b01: set_os(true, true); set_user(true, false); break; default: set_os(true, false); set_user(false, false); break; } } } }; }