// // Video.cpp // Clock Signal // // Created by Thomas Harte on 14/04/2018. // Copyright 2018 Thomas Harte. All rights reserved. // #include "Video.hpp" using namespace Apple::II::Video; VideoBase::VideoBase(bool is_iie, std::function &&target) : VideoSwitches(is_iie, Cycles(2), std::move(target)), crt_(910, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance1), is_iie_(is_iie) { crt_.set_display_type(Outputs::Display::DisplayType::CompositeColour); set_use_square_pixels(use_square_pixels_); // TODO: there seems to be some sort of bug whereby switching modes can cause // a signal discontinuity that knocks phase out of whack. So it isn't safe to // use default_colour_bursts elsewhere, though it otherwise should be. If/when // it is, start doing so and return to setting the immediate phase up here. // crt_.set_immediate_default_phase(0.5f); } void VideoBase::set_use_square_pixels(bool use_square_pixels) { use_square_pixels_ = use_square_pixels; // HYPER-UGLY HACK. See correlated hack in the Macintosh. #if defined(__APPLE__) && !defined(IGNORE_APPLE) crt_.set_visible_area(Outputs::Display::Rect(0.128f, 0.122f, 0.75f, 0.77f)); #else if(use_square_pixels) { crt_.set_visible_area(Outputs::Display::Rect(0.128f, 0.09f, 0.75f, 0.77f)); } else { crt_.set_visible_area(Outputs::Display::Rect(0.128f, 0.12f, 0.75f, 0.77f)); } #endif if(use_square_pixels) { // From what I can make out, many contemporary Apple II monitors were // calibrated slightly to stretch the Apple II's display slightly wider // than it should be per the NTSC standards, for approximately square // pixels. This reproduces that. // 243 lines and 52µs are visible. // i.e. to be square, 1 pixel should be: (1/243 * 52) * (3/4) = 156/972 = 39/243 µs // On an Apple II each pixel is actually 1/7µs. // Therefore the adjusted aspect ratio should be (4/3) * (39/243)/(1/7) = (4/3) * 273/243 = 1092/729 = 343/243 ~= 1.412 crt_.set_aspect_ratio(343.0f / 243.0f); } else { // Standard NTSC aspect ratio. crt_.set_aspect_ratio(4.0f / 3.0f); } } bool VideoBase::get_use_square_pixels() { return use_square_pixels_; } void VideoBase::set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); } Outputs::Display::ScanStatus VideoBase::get_scaled_scan_status() const { return crt_.get_scaled_scan_status() / 14.0f; } void VideoBase::set_display_type(Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); } Outputs::Display::DisplayType VideoBase::get_display_type() const { return crt_.get_display_type(); } void VideoBase::output_text(uint8_t *target, const uint8_t *const source, size_t length, size_t pixel_row) const { for(size_t c = 0; c < length; ++c) { const int character = source[c] & character_zones_[source[c] >> 6].address_mask; const uint8_t xor_mask = character_zones_[source[c] >> 6].xor_mask; const std::size_t character_address = size_t(character << 3) + pixel_row; const uint8_t character_pattern = character_rom_[character_address] ^ xor_mask; // The character ROM is output MSB to LSB rather than LSB to MSB. target[0] = target[1] = character_pattern & 0x40; target[2] = target[3] = character_pattern & 0x20; target[4] = target[5] = character_pattern & 0x10; target[6] = target[7] = character_pattern & 0x08; target[8] = target[9] = character_pattern & 0x04; target[10] = target[11] = character_pattern & 0x02; target[12] = target[13] = character_pattern & 0x01; graphics_carry_ = character_pattern & 0x01; target += 14; } } void VideoBase::output_double_text(uint8_t *target, const uint8_t *const source, const uint8_t *const auxiliary_source, size_t length, size_t pixel_row) const { for(size_t c = 0; c < length; ++c) { const std::size_t character_addresses[2] = { size_t( (auxiliary_source[c] & character_zones_[auxiliary_source[c] >> 6].address_mask) << 3 ) + pixel_row, size_t( (source[c] & character_zones_[source[c] >> 6].address_mask) << 3 ) + pixel_row }; const uint8_t character_patterns[2] = { uint8_t( character_rom_[character_addresses[0]] ^ character_zones_[auxiliary_source[c] >> 6].xor_mask ), uint8_t( character_rom_[character_addresses[1]] ^ character_zones_[source[c] >> 6].xor_mask ) }; // The character ROM is output MSB to LSB rather than LSB to MSB. target[0] = character_patterns[0] & 0x40; target[1] = character_patterns[0] & 0x20; target[2] = character_patterns[0] & 0x10; target[3] = character_patterns[0] & 0x08; target[4] = character_patterns[0] & 0x04; target[5] = character_patterns[0] & 0x02; target[6] = character_patterns[0] & 0x01; target[7] = character_patterns[1] & 0x40; target[8] = character_patterns[1] & 0x20; target[9] = character_patterns[1] & 0x10; target[10] = character_patterns[1] & 0x08; target[11] = character_patterns[1] & 0x04; target[12] = character_patterns[1] & 0x02; target[13] = character_patterns[1] & 0x01; graphics_carry_ = character_patterns[1] & 0x01; target += 14; } } void VideoBase::output_low_resolution(uint8_t *target, const uint8_t *const source, size_t length, int column, int row) const { const int row_shift = row&4; for(size_t c = 0; c < length; ++c) { // Low-resolution graphics mode shifts the colour code on a loop, but has to account for whether this // 14-sample output window is starting at the beginning of a colour cycle or halfway through. if((column + int(c))&1) { target[0] = target[4] = target[8] = target[12] = (source[c] >> row_shift) & 4; target[1] = target[5] = target[9] = target[13] = (source[c] >> row_shift) & 8; target[2] = target[6] = target[10] = (source[c] >> row_shift) & 1; target[3] = target[7] = target[11] = (source[c] >> row_shift) & 2; graphics_carry_ = (source[c] >> row_shift) & 8; } else { target[0] = target[4] = target[8] = target[12] = (source[c] >> row_shift) & 1; target[1] = target[5] = target[9] = target[13] = (source[c] >> row_shift) & 2; target[2] = target[6] = target[10] = (source[c] >> row_shift) & 4; target[3] = target[7] = target[11] = (source[c] >> row_shift) & 8; graphics_carry_ = (source[c] >> row_shift) & 2; } target += 14; } } void VideoBase::output_fat_low_resolution(uint8_t *target, const uint8_t *const source, size_t length, int, int row) const { const int row_shift = row&4; for(size_t c = 0; c < length; ++c) { // Fat low-resolution mode appears not to do anything to try to make odd and // even columns compatible. target[0] = target[1] = target[8] = target[9] = (source[c] >> row_shift) & 1; target[2] = target[3] = target[10] = target[11] = (source[c] >> row_shift) & 2; target[4] = target[5] = target[12] = target[13] = (source[c] >> row_shift) & 4; target[6] = target[7] = (source[c] >> row_shift) & 8; graphics_carry_ = (source[c] >> row_shift) & 4; target += 14; } } void VideoBase::output_double_low_resolution(uint8_t *target, const uint8_t *const source, const uint8_t *const auxiliary_source, size_t length, int column, int row) const { const int row_shift = row&4; for(size_t c = 0; c < length; ++c) { if((column + int(c))&1) { target[0] = target[4] = (auxiliary_source[c] >> row_shift) & 4; target[1] = target[5] = (auxiliary_source[c] >> row_shift) & 8; target[2] = target[6] = (auxiliary_source[c] >> row_shift) & 1; target[3] = (auxiliary_source[c] >> row_shift) & 2; target[8] = target[12] = (source[c] >> row_shift) & 8; target[9] = target[13] = (source[c] >> row_shift) & 1; target[10] = (source[c] >> row_shift) & 2; target[7] = target[11] = (source[c] >> row_shift) & 4; graphics_carry_ = (source[c] >> row_shift) & 8; } else { target[0] = target[4] = (auxiliary_source[c] >> row_shift) & 1; target[1] = target[5] = (auxiliary_source[c] >> row_shift) & 2; target[2] = target[6] = (auxiliary_source[c] >> row_shift) & 4; target[3] = (auxiliary_source[c] >> row_shift) & 8; target[8] = target[12] = (source[c] >> row_shift) & 2; target[9] = target[13] = (source[c] >> row_shift) & 4; target[10] = (source[c] >> row_shift) & 8; target[7] = target[11] = (source[c] >> row_shift) & 1; graphics_carry_ = (source[c] >> row_shift) & 2; } target += 14; } } void VideoBase::output_high_resolution(uint8_t *target, const uint8_t *const source, size_t length) const { for(size_t c = 0; c < length; ++c) { // High resolution graphics shift out LSB to MSB, optionally with a delay of half a pixel. // If there is a delay, the previous output level is held to bridge the gap. // Delays may be ignored on a IIe if Annunciator 3 is set; that's the state that // high_resolution_mask_ models. if(source[c] & high_resolution_mask_ & 0x80) { target[0] = graphics_carry_; target[1] = target[2] = source[c] & 0x01; target[3] = target[4] = source[c] & 0x02; target[5] = target[6] = source[c] & 0x04; target[7] = target[8] = source[c] & 0x08; target[9] = target[10] = source[c] & 0x10; target[11] = target[12] = source[c] & 0x20; target[13] = source[c] & 0x40; } else { target[0] = target[1] = source[c] & 0x01; target[2] = target[3] = source[c] & 0x02; target[4] = target[5] = source[c] & 0x04; target[6] = target[7] = source[c] & 0x08; target[8] = target[9] = source[c] & 0x10; target[10] = target[11] = source[c] & 0x20; target[12] = target[13] = source[c] & 0x40; } graphics_carry_ = source[c] & 0x40; target += 14; } } void VideoBase::output_double_high_resolution(uint8_t *target, const uint8_t *const source, const uint8_t *const auxiliary_source, size_t length) const { for(size_t c = 0; c < length; ++c) { target[0] = auxiliary_source[c] & 0x01; target[1] = auxiliary_source[c] & 0x02; target[2] = auxiliary_source[c] & 0x04; target[3] = auxiliary_source[c] & 0x08; target[4] = auxiliary_source[c] & 0x10; target[5] = auxiliary_source[c] & 0x20; target[6] = auxiliary_source[c] & 0x40; target[7] = source[c] & 0x01; target[8] = source[c] & 0x02; target[9] = source[c] & 0x04; target[10] = source[c] & 0x08; target[11] = source[c] & 0x10; target[12] = source[c] & 0x20; target[13] = source[c] & 0x40; graphics_carry_ = auxiliary_source[c] & 0x40; target += 14; } }