// // DiskII.cpp // Clock Signal // // Created by Thomas Harte on 20/04/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "DiskII.hpp" #include using namespace Apple; namespace { const uint8_t input_command = 0x4; // i.e. Q6 const uint8_t input_mode = 0x8; // i.e. Q7 const uint8_t input_flux = 0x1; } DiskII::DiskII() : inputs_(input_command), drives_{{2045454, 300, 1}, {2045454, 300, 1}} { drives_[0].set_sleep_observer(this); drives_[1].set_sleep_observer(this); } void DiskII::set_control(Control control, bool on) { int previous_stepper_mask = stepper_mask_; switch(control) { case Control::P0: stepper_mask_ = (stepper_mask_ & 0xe) | (on ? 0x1 : 0x0); break; case Control::P1: stepper_mask_ = (stepper_mask_ & 0xd) | (on ? 0x2 : 0x0); break; case Control::P2: stepper_mask_ = (stepper_mask_ & 0xb) | (on ? 0x4 : 0x0); break; case Control::P3: stepper_mask_ = (stepper_mask_ & 0x7) | (on ? 0x8 : 0x0); break; case Control::Motor: // TODO: does the motor control trigger both motors at once? drives_[0].set_motor_on(on); drives_[1].set_motor_on(on); break; } // printf("%0x: Set control %d %s\n", stepper_mask_, control, on ? "on" : "off"); // If the stepper magnet selections have changed, and any is on, see how // that moves the head. if(previous_stepper_mask ^ stepper_mask_ && stepper_mask_) { // Convert from a representation of bits set to the centre of pull. int direction = 0; if(stepper_mask_&1) direction += (((stepper_position_ - 0) + 4)&7) - 4; if(stepper_mask_&2) direction += (((stepper_position_ - 2) + 4)&7) - 4; if(stepper_mask_&4) direction += (((stepper_position_ - 4) + 4)&7) - 4; if(stepper_mask_&8) direction += (((stepper_position_ - 6) + 4)&7) - 4; const int bits_set = (stepper_mask_&1) + ((stepper_mask_ >> 1)&1) + ((stepper_mask_ >> 2)&1) + ((stepper_mask_ >> 3)&1); direction /= bits_set; // Compare to the stepper position to decide whether that pulls in the current cog notch, // or grabs a later one. drives_[active_drive_].step(Storage::Disk::HeadPosition(-direction, 4)); stepper_position_ = (stepper_position_ - direction + 8) & 7; } } void DiskII::set_mode(Mode mode) { // printf("Set mode %d\n", mode); inputs_ = (inputs_ & ~input_mode) | ((mode == Mode::Write) ? input_mode : 0); set_controller_can_sleep(); } void DiskII::select_drive(int drive) { // printf("Select drive %d\n", drive); active_drive_ = drive & 1; drives_[active_drive_].set_event_delegate(this); drives_[active_drive_^1].set_event_delegate(nullptr); } void DiskII::set_data_register(uint8_t value) { // printf("Set data register (?)\n"); inputs_ |= input_command; data_register_ = value; set_controller_can_sleep(); } uint8_t DiskII::get_shift_register() { // if(shift_register_ & 0x80) printf("[%02x] ", shift_register_); inputs_ &= ~input_command; set_controller_can_sleep(); return shift_register_; } void DiskII::run_for(const Cycles cycles) { if(is_sleeping()) return; int integer_cycles = cycles.as_int(); if(!controller_can_sleep_) { while(integer_cycles--) { const int address = (state_ & 0xf0) | inputs_ | ((shift_register_&0x80) >> 6); inputs_ |= input_flux; state_ = state_machine_[static_cast(address)]; switch(state_ & 0xf) { case 0x0: shift_register_ = 0; break; // clear case 0x9: shift_register_ = static_cast(shift_register_ << 1); break; // shift left, bringing in a zero case 0xd: shift_register_ = static_cast((shift_register_ << 1) | 1); break; // shift left, bringing in a one case 0xb: shift_register_ = data_register_; break; // load case 0xa: // shift right, bringing in write protected status shift_register_ = (shift_register_ >> 1) | (is_write_protected() ? 0x80 : 0x00); break; default: break; } // TODO: surely there's a less heavyweight solution than this? if(!drive_is_sleeping_[0]) drives_[0].run_for(Cycles(1)); if(!drive_is_sleeping_[1]) drives_[1].run_for(Cycles(1)); } } else { if(!drive_is_sleeping_[0]) drives_[0].run_for(cycles); if(!drive_is_sleeping_[1]) drives_[1].run_for(cycles); } set_controller_can_sleep(); } void DiskII::set_controller_can_sleep() { // Permit the controller to sleep if it's in sense write protect mode, and the shift register // has already filled with the result of shifting eight times. controller_can_sleep_ = (inputs_ == (input_command | input_flux)) && (shift_register_ == (is_write_protected() ? 0xff : 0x00)); if(is_sleeping()) update_sleep_observer(); } bool DiskII::is_write_protected() { return true; } void DiskII::set_state_machine(const std::vector &state_machine) { /* An unadulterated P6 ROM read returns values with an address formed as: state b0, state b2, state b3, pulse, Q7, Q6, shift, state b1 ... and has the top nibble reflected. Beneath Apple Pro-DOS uses a different order and several of the online copies are reformatted into that order. So the code below remaps into Beneath Apple Pro-DOS order if the supplied state machine isn't already in that order. */ if(state_machine[0] != 0x18) { for(size_t source_address = 0; source_address < 256; ++source_address) { // Remap into Beneath Apple Pro-DOS address form. size_t destination_address = ((source_address&0x80) ? 0x10 : 0x00) | ((source_address&0x01) ? 0x20 : 0x00) | ((source_address&0x40) ? 0x40 : 0x00) | ((source_address&0x20) ? 0x80 : 0x00) | ((source_address&0x10) ? 0x01 : 0x00) | ((source_address&0x08) ? 0x08 : 0x00) | ((source_address&0x04) ? 0x04 : 0x00) | ((source_address&0x02) ? 0x02 : 0x00); uint8_t source_value = state_machine[source_address]; // Remap into Beneath Apple Pro-DOS value form. source_value = ((source_value & 0x80) ? 0x10 : 0x0) | ((source_value & 0x40) ? 0x20 : 0x0) | ((source_value & 0x20) ? 0x40 : 0x0) | ((source_value & 0x10) ? 0x80 : 0x0) | (source_value & 0x0f); // Store. state_machine_[destination_address] = source_value; } } else { memcpy(&state_machine_[0], &state_machine[0], 128); } } void DiskII::set_disk(const std::shared_ptr &disk, int drive) { drives_[drive].set_disk(disk); } void DiskII::process_event(const Storage::Disk::Track::Event &event) { if(event.type == Storage::Disk::Track::Event::FluxTransition) { inputs_ &= ~input_flux; set_controller_can_sleep(); } } void DiskII::set_component_is_sleeping(Sleeper *component, bool is_sleeping) { drive_is_sleeping_[0] = drives_[0].is_sleeping(); drive_is_sleeping_[1] = drives_[1].is_sleeping(); update_sleep_observer(); } bool DiskII::is_sleeping() { return controller_can_sleep_ && drive_is_sleeping_[0] && drive_is_sleeping_[1]; } void DiskII::set_register(int address, uint8_t value) { trigger_address(address, value); } uint8_t DiskII::get_register(int address) { return trigger_address(address, 0xff); } uint8_t DiskII::trigger_address(int address, uint8_t value) { switch(address & 0xf) { default: case 0x0: set_control(Control::P0, false); break; case 0x1: set_control(Control::P0, true); break; case 0x2: set_control(Control::P1, false); break; case 0x3: set_control(Control::P1, true); break; case 0x4: set_control(Control::P2, false); break; case 0x5: set_control(Control::P2, true); break; case 0x6: set_control(Control::P3, false); break; case 0x7: set_control(Control::P3, true); break; case 0x8: set_control(Control::Motor, false); break; case 0x9: set_control(Control::Motor, true); break; case 0xa: select_drive(0); break; case 0xb: select_drive(1); break; case 0xc: return get_shift_register(); case 0xd: set_data_register(value); break; case 0xe: set_mode(Mode::Read); break; case 0xf: set_mode(Mode::Write); break; } return 0xff; }