// // OPL2.cpp // Clock Signal // // Created by Thomas Harte on 02/04/2020. // Copyright © 2020 Thomas Harte. all rights reserved. // #include "OPL2.hpp" #include #include using namespace Yamaha::OPL; template OPLBase::OPLBase(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {} template void OPLBase::write(uint16_t address, uint8_t value) { if(address & 1) { static_cast(this)->write_register(selected_register_, value); } else { selected_register_ = value; } } template class Yamaha::OPL::OPLBase; template class Yamaha::OPL::OPLBase; OPLL::OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, int audio_divider, bool is_vrc7): OPLBase(task_queue), audio_divider_(audio_divider) { // Due to the way that sound mixing works on the OPLL, the audio divider may not // be larger than 2. assert(audio_divider <= 2); // Install fixed instruments. const uint8_t *patch_set = is_vrc7 ? vrc7_patch_set : opll_patch_set; for(int c = 0; c < 15; ++c) { setup_fixed_instrument(c+1, patch_set); patch_set += 8; } // Install rhythm patches. for(int c = 0; c < 3; ++c) { setup_fixed_instrument(c+16, &percussion_patch_set[c * 8]); } // Set default modulators. for(int c = 0; c < 9; ++c) { channels_[c].modulator = &operators_[0]; } } bool OPLL::is_zero_level() { // for(int c = 0; c < 9; ++c) { // if(channels_[c].is_audible()) return false; // } return false; } void OPLL::get_samples(std::size_t number_of_samples, std::int16_t *target) { // Both the OPLL and the OPL2 divide the input clock by 72 to get the base tick frequency; // unlike the OPL2 the OPLL time-divides the output for 'mixing'. const int update_period = 72 / audio_divider_; const int channel_output_period = 8 / audio_divider_; // Fill in any leftover from the previous session. if(audio_offset_) { while(audio_offset_ < update_period && number_of_samples) { *target = int16_t(channels_[audio_offset_ / channel_output_period].level); ++target; ++audio_offset_; --number_of_samples; } audio_offset_ = 0; } // End now if that provided everything that was asked for. if(!number_of_samples) return; int total_updates = int(number_of_samples) / update_period; number_of_samples %= size_t(update_period); audio_offset_ = int(number_of_samples); while(total_updates--) { update_all_chanels(); for(int c = 0; c < update_period; ++c) { *target = int16_t(channels_[c / channel_output_period].level); ++target; } } // If there are any other spots remaining, fill them. if(number_of_samples) { update_all_chanels(); for(int c = 0; c < int(number_of_samples); ++c) { *target = int16_t(channels_[c / channel_output_period].level); ++target; } } } void OPLL::set_sample_volume_range(std::int16_t range) { total_volume_ = range; } uint8_t OPLL::read(uint16_t address) { // I've seen mention of an undocumented two-bit status register. I don't yet know what is in it. return 0xff; } void OPLL::write_register(uint8_t address, uint8_t value) { // The OPLL doesn't have timers or other non-audio functions, so all writes // go to the audio queue. task_queue_.defer([this, address, value] { // The first 8 locations are used to define the custom instrument, and have // exactly the same format as the patch set arrays at the head of this file. if(address < 8) { custom_instrument_[address] = value; // Update whatever that did to the instrument. setup_fixed_instrument(0, custom_instrument_); return; } // Register 0xe is a cut-down version of the OPLL's register 0xbd. if(address == 0xe) { depth_rhythm_control_ = value & 0x3f; return; } const auto index = address & 0xf; if(index > 8) return; switch(address & 0xf0) { case 0x30: // Select an instrument in the top nibble, set a channel volume in the lower. channels_[index].overrides.attenuation = value & 0xf; channels_[index].modulator = &operators_[(value >> 4) * 2]; break; case 0x10: channels_[index].set_frequency_low(value); break; case 0x20: // Set sustain on/off, key on/off, octave and a single extra bit of frequency. // So they're a lot like OPLL registers 0xb0 to 0xb8, but not identical. channels_[index].set_9bit_frequency_octave_key_on(value); channels_[index].overrides.use_sustain_level = value & 0x20; break; default: break; } }); } void OPLL::setup_fixed_instrument(int number, const uint8_t *data) { auto modulator = &operators_[number * 2]; auto carrier = &operators_[number * 2 + 1]; modulator->set_am_vibrato_hold_sustain_ksr_multiple(data[0]); carrier->set_am_vibrato_hold_sustain_ksr_multiple(data[1]); modulator->set_scaling_output(data[2]); // Set waveforms — only sine and halfsine are available. modulator->set_waveform((data[3] >> 3) & 1); carrier->set_waveform((data[3] >> 4) & 1); // TODO: data[3] b0-b2: modulator feedback level // TODO: data[3] b6, b7: carrier key-scale level // Set ADSR parameters. modulator->set_attack_decay(data[4]); carrier->set_attack_decay(data[5]); modulator->set_sustain_release(data[6]); carrier->set_sustain_release(data[7]); } void OPLL::update_all_chanels() { if(depth_rhythm_control_ & 0x20) { // Rhythm mode. Somehow? // Melodic channels. Easy! for(int c = 0; c < 6; ++ c) { channels_[c].level = (channels_[c].update() * total_volume_) >> 14; } } else { // All melody, all the time. for(int c = 0; c < 9; ++ c) { channels_[c].level = (channels_[c].update() * total_volume_) >> 14; } } // channels_[2].level = (channels_[2].update() * total_volume_) >> 14; } /* template void OPL2::get_samples(std::size_t number_of_samples, std::int16_t *target) { // TODO. // out = exp(logsin(phase2 + exp(logsin(phase1) + gain1)) + gain2) // Melodic channels are: // // Channel Operator 1 Operator 2 // 0 0 3 // 1 1 4 // 2 2 5 // 3 6 9 // 4 7 10 // 5 8 11 // 6 12 15 // 7 13 16 // 8 14 17 // // In percussion mode, only channels 0–5 are use as melodic, with 6, 7 and 8 being // replaced by: // // Bass drum, using operators 12 and 15; // Snare, using operator 16; // Tom tom, using operator 14, // Cymbal, using operator 17; and // Symbol, using operator 13. } */ void OPL2::write_register(uint8_t address, uint8_t value) { // Deal with timer changes synchronously. switch(address) { case 0x02: timers_[0] = value; return; case 0x03: timers_[1] = value; return; case 0x04: timer_control_ = value; return; // TODO from register 4: // b7 = IRQ reset; // b6/b5 = timer 1/2 mask (irq enabling flags, I think?) // b4/b3 = timer 2/1 start (seemingly the opposite order to b6/b5?) default: break; } // Enqueue any changes that affect audio output. task_queue_.enqueue([this, address, value] { // // Modal modifications. // switch(address) { case 0x01: waveform_enable_ = value & 0x20; break; case 0x08: // b7: "composite sine wave mode on/off"? csm_keyboard_split_ = value; // b6: "Controls the split point of the keyboard. When 0, the keyboard split is the // second bit from the bit 8 of the F-Number. When 1, the MSB of the F-Number is used." break; case 0xbd: depth_rhythm_control_ = value; break; default: break; } // // Operator modifications. // if((address >= 0x20 && address < 0xa0) || address >= 0xe0) { // The 18 operators are spreat out across 22 addresses; each group of // six is framed within an eight-byte area thusly: constexpr int operator_by_address[] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; const auto index = operator_by_address[address & 0x1f]; if(index == -1) return; switch(address & 0xe0) { case 0x20: operators_[index].set_am_vibrato_hold_sustain_ksr_multiple(value); break; case 0x40: operators_[index].set_scaling_output(value); break; case 0x60: operators_[index].set_attack_decay(value); break; case 0x80: operators_[index].set_sustain_release(value); break; case 0xe0: operators_[index].set_waveform(value); break; default: break; } } // // Channel modifications. // const auto index = address & 0xf; if(index > 8) return; switch(address & 0xf0) { case 0xa0: channels_[index].set_frequency_low(value); break; case 0xb0: channels_[index].set_10bit_frequency_octave_key_on(value); break; case 0xc0: channels_[index].set_feedback_mode(value); break; default: break; } }); } uint8_t OPL2::read(uint16_t address) { // TODO. There's a status register where: // b7 = IRQ status (set if interrupt request ongoing) // b6 = timer 1 flag (set if timer 1 expired) // b5 = timer 2 flag return 0xff; }