// // 9918.cpp // Clock Signal // // Created by Thomas Harte on 25/11/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "9918.hpp" using namespace TI; namespace { const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) { uint32_t result = 0; uint8_t *result_ptr = reinterpret_cast(&result); result_ptr[0] = r; result_ptr[1] = g; result_ptr[2] = b; result_ptr[3] = 0; return result; } const uint32_t palette[16] = { palette_pack(0, 0, 0), palette_pack(0, 0, 0), palette_pack(90, 201, 81), palette_pack(149, 231, 133), palette_pack(113, 104, 183), palette_pack(146, 132, 255), palette_pack(200, 114, 89), palette_pack(115, 222, 255), palette_pack(238, 124, 90), palette_pack(255, 166, 132), palette_pack(219, 232, 92), palette_pack(240, 247, 143), palette_pack(78, 176, 63), palette_pack(202, 118, 216), palette_pack(233, 233, 233), palette_pack(255, 255, 255) }; } TMS9918::TMS9918(Personality p) : crt_(new Outputs::CRT::CRT(342, 1, Outputs::CRT::DisplayType::NTSC60, 4)) { crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "return texture(sampler, coordinate).rgb / vec3(255.0);" "}"); } std::shared_ptr TMS9918::get_crt() { return crt_; } void TMS9918::run_for(const HalfCycles cycles) { // As specific as I've been able to get: // Scanline time is always 227.75 cycles. // PAL output is 313 lines total. NTSC output is 262 lines total. // Interrupt is signalled upon entering the lower border. // Convert to 342 cycles per line; the internal clock is 1.5 times the // nominal 3.579545 Mhz that I've advertised for this part. int int_cycles = (cycles.as_int() * 3) + cycles_error_; cycles_error_ = int_cycles & 3; int_cycles >>= 2; if(!int_cycles) return; // // Break that down as: // 26 cycles sync; while(int_cycles) { int cycles_left = std::min(342 - column_, int_cycles); column_ += cycles_left; if(row_ < 192) { // Pixels. if(!output_column_ && column_ >= 26) { crt_->output_sync(static_cast(26)); output_column_ = 26; } // TODO: colour burst. if(output_column_ >= 26) { // TODO: modes other than text int pixels_end = std::min(69, column_); if(output_column_ < pixels_end) { output_border(static_cast(pixels_end - output_column_)); output_column_ = pixels_end; if(pixels_end == 69) { pixel_target_ = reinterpret_cast(crt_->allocate_write_area(256)); } } } if(output_column_ >= 69) { int pixels_end = std::min(309, column_); if(output_column_ < pixels_end) { while(output_column_ < pixels_end) { // TODO: modes other than text pixel_target_[0] = 0xff; pixel_target_ ++; output_column_ ++; } if(output_column_ == 309) { crt_->output_data(240, 1); // TODO: modes other than text } } } if(column_ >= 309) { output_border(static_cast(column_ - output_column_)); output_column_ = column_; } } else if(row_ >= 227 && row_ < 230) { // TODO: don't hard-code NTSC. // Vertical sync. if(column_ == 342) { crt_->output_sync(static_cast(342)); } } else { // Blank. if(!output_column_ && column_ >= 26) { crt_->output_sync(static_cast(26)); output_column_ = 26; } if(column_ >= 26) { output_border(column_ - output_column_); output_column_ = column_; } } int_cycles -= cycles_left; if(column_ == 342) { column_ = output_column_ = 0; row_ = (row_ + 1) % 262; // TODO: don't hard-code NTSC. // TODO: consider triggering an interrupt here. } } } void TMS9918::output_border(int cycles) { pixel_target_ = reinterpret_cast(crt_->allocate_write_area(1)); if(pixel_target_) *pixel_target_ = palette[background_colour_]; crt_->output_level(static_cast(cycles)); } // TODO: as a temporary development measure, memory access below is magically instantaneous. Correct that. void TMS9918::set_register(int address, uint8_t value) { // Writes to address 0 are writes to the video RAM. Store // the value and return. if(!(address & 1)) { write_phase_ = false; read_ahead_buffer_ = value; ram_[ram_pointer_ & 16383] = value; ram_pointer_++; return; } // Writes to address 1 are performed in pairs; if this is the // low byte of a value, store it and wait for the high byte. if(!write_phase_) { low_write_ = value; write_phase_ = true; return; } write_phase_ = false; if(value & 0x80) { // This is a write to a register. switch(value & 7) { case 0: next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1); break; case 1: blank_screen_ = !!(low_write_ & 0x40); generate_interrupts_ = !!(low_write_ & 0x20); next_screen_mode_ = (screen_mode_ & 1) | ((low_write_ & 0x18) >> 3); sprites_16x16_ = !!(low_write_ & 0x02); sprites_magnified_ = !!(low_write_ & 0x01); reevaluate_interrupts(); break; case 2: pattern_name_address_ = static_cast((low_write_ & 0xf) << 10); break; case 3: colour_table_address_ = static_cast(low_write_ << 6); break; case 4: pattern_generator_table_address_ = static_cast((low_write_ & 0x07) << 11); break; case 5: sprite_attribute_table_address_ = static_cast((low_write_ & 0x7f) << 7); break; case 6: sprite_generator_table_address_ = static_cast((low_write_ & 0x07) << 11); break; case 7: text_colour_ = low_write_ >> 4; background_colour_ = low_write_ & 0xf; break; } } else { // This is a write to the RAM pointer. ram_pointer_ = static_cast(low_write_ | (value << 8)); if(!(value & 0x40)) { // Officially a 'read' set, so perform lookahead. read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; ram_pointer_++; } } } uint8_t TMS9918::get_register(int address) { write_phase_ = false; // Reads from address 0 read video RAM, via the read-ahead buffer. if(!(address & 1)) { uint8_t result = read_ahead_buffer_; read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; ram_pointer_++; return result; } // Reads from address 1 get the status register; uint8_t result = status_; status_ &= ~(0x80 | 0x20); reevaluate_interrupts(); return result; } void TMS9918::reevaluate_interrupts() { }