// // 9918Base.hpp // Clock Signal // // Created by Thomas Harte on 14/12/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #ifndef TMS9918Base_hpp #define TMS9918Base_hpp #include "ClockConverter.hpp" #include "../../../ClockReceiver/ClockReceiver.hpp" #include "../../../Numeric/BitReverse.hpp" #include "../../../Outputs/CRT/CRT.hpp" #include "PersonalityTraits.hpp" #include #include #include #include #include #include namespace TI { namespace TMS { // The screen mode is a necessary predecessor to picking the line mode, // which is the thing latched per line. enum class ScreenMode { // Original TMS modes. Blank, Text, MultiColour, ColouredText, Graphics, // 8-bit Sega modes. SMSMode4, // New Yamaha V9938 modes. YamahaText80, YamahaGraphics3, YamahaGraphics4, YamahaGraphics5, YamahaGraphics6, YamahaGraphics7, // Rebranded Yamaha V9938 modes. YamahaGraphics1 = ColouredText, YamahaGraphics2 = Graphics, }; enum class LineMode { Text, Character, Refresh, SMS, Yamaha, YamahaNoSprites, }; enum class MemoryAccess { Read, Write, None }; // Temporary buffers collect a representation of each line prior to pixel serialisation. // // TODO: either template on personality, to avoid having to be the union of all potential footprints, // or just stop keeping so many of these in the 9918. struct LineBuffer { LineBuffer() {} // The line mode describes the proper timing diagram for this line. LineMode line_mode = LineMode::Text; // Holds the horizontal scroll position to apply to this line; // of those VDPs currently implemented, affects the Master System only. uint8_t latched_horizontal_scroll = 0; // The names array holds pattern names, as an offset into memory, and // potentially flags also. union { // The TMS and Sega VDPs are close enough to always tile-based; // this struct captures maximal potential detail there. struct { struct { size_t offset = 0; uint8_t flags = 0; } names[40]; // The patterns array holds tile patterns, corresponding 1:1 with names. // Four bytes per pattern is the maximum required by any // currently-implemented VDP. uint8_t patterns[40][4]; }; // The Yamaha VDP also has a variety of bitmap modes, the widest of which is // 512px @ 4bpp. uint8_t bitmap[256]; }; /* Horizontal layout (on a 342-cycle clock): 15 cycles right border 58 cycles blanking & sync 13 cycles left border ... i.e. to cycle 86, then: border up to first_pixel_output_column; pixels up to next_border_column; border up to the end. e.g. standard 256-pixel modes will want to set first_pixel_output_column = 86, next_border_column = 342. */ int first_pixel_output_column = 94; int next_border_column = 334; size_t pixel_count = 256; // An active sprite is one that has been selected for composition onto // this line. struct ActiveSprite { int index = 0; // The original in-table index of this sprite. int row = 0; // The row of the sprite that should be drawn. int x = 0; // The sprite's x position on screen. uint8_t image[4]; // Up to four bytes of image information. int shift_position = 0; // An offset representing how much of the image information has already been drawn. } active_sprites[8]; int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required. bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites // being evaluated for display. This flag determines whether the sentinel has yet been reached. void reset_sprite_collection(); }; struct LineBufferPointer { int row, column; }; constexpr uint8_t StatusInterrupt = 0x80; constexpr uint8_t StatusSpriteOverflow = 0x40; constexpr int StatusSpriteCollisionShift = 5; constexpr uint8_t StatusSpriteCollision = 0x20; /// A container for personality-specific storage; see specific instances below. template struct Storage { }; template <> struct Storage { }; // Yamaha-specific storage. template struct Storage> { int selected_status_ = 0; int indirect_register_ = 0; bool increment_indirect_register_ = false; uint32_t palette_[16]{}; uint8_t new_colour_ = 0; uint8_t palette_entry_ = 0; uint8_t mode_ = 0; }; // Master System-specific storage. template struct Storage> { // The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly // fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there // isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps // track of pending collisions, for visual reproduction. struct CRAMDot { LineBufferPointer location; uint32_t value; }; std::vector upcoming_cram_dots_; // The Master System's additional colour RAM. uint32_t colour_ram_[32]; bool cram_is_selected_ = false; // Fields below affect only the Master System output mode. // Programmer-set flags. bool vertical_scroll_lock_ = false; bool horizontal_scroll_lock_ = false; bool hide_left_column_ = false; bool shift_sprites_8px_left_ = false; bool mode4_enable_ = false; uint8_t horizontal_scroll_ = 0; uint8_t vertical_scroll_ = 0; // Holds the vertical scroll position for this frame; this is latched // once and cannot dynamically be changed until the next frame. uint8_t latched_vertical_scroll_ = 0; // Various resource addresses with VDP-version-specific modifications // built int. size_t pattern_name_address_; size_t sprite_attribute_table_address_; size_t sprite_generator_table_address_; }; template struct Base: public Storage { Base(); static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles // after corresponding data read. static constexpr uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) { #if TARGET_RT_BIG_ENDIAN return uint32_t((r << 24) | (g << 16) | (b << 8)); #else return uint32_t((b << 16) | (g << 8) | r); #endif } // The default TMS palette. static constexpr std::array palette { palette_pack(0, 0, 0), palette_pack(0, 0, 0), palette_pack(33, 200, 66), palette_pack(94, 220, 120), palette_pack(84, 85, 237), palette_pack(125, 118, 252), palette_pack(212, 82, 77), palette_pack(66, 235, 245), palette_pack(252, 85, 84), palette_pack(255, 121, 120), palette_pack(212, 193, 84), palette_pack(230, 206, 128), palette_pack(33, 176, 59), palette_pack(201, 91, 186), palette_pack(204, 204, 204), palette_pack(255, 255, 255) }; Outputs::CRT::CRT crt_; TVStandard tv_standard_ = TVStandard::NTSC; // Personality-specific metrics and converters. ClockConverter clock_converter_; // This VDP's DRAM. std::array ram_; // State of the DRAM/CRAM-access mechanism. size_t ram_pointer_ = 0; uint8_t read_ahead_buffer_ = 0; MemoryAccess queued_access_ = MemoryAccess::None; int cycles_until_access_ = 0; int minimum_access_column_ = 0; // The main status register. uint8_t status_ = 0; // Current state of programmer input. bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write. uint8_t low_write_ = 0; // Buffers the low byte of a write. // Various programmable flags. bool mode1_enable_ = false; bool mode2_enable_ = false; bool mode3_enable_ = false; bool blank_display_ = false; bool sprites_16x16_ = false; bool sprites_magnified_ = false; bool generate_interrupts_ = false; int sprite_height_ = 8; // Programmer-specified addresses. size_t pattern_name_address_ = 0; // i.e. address of the tile map. size_t colour_table_address_ = 0; // address of the colour map (if applicable). size_t pattern_generator_table_address_ = 0; // address of the tile contents. size_t sprite_attribute_table_address_ = 0; // address of the sprite list. size_t sprite_generator_table_address_ = 0; // address of the sprite contents. // Default colours. uint8_t text_colour_ = 0; uint8_t background_colour_ = 0; // Internal mechanisms for position tracking. int latched_column_ = 0; // A struct to contain timing information that is a function of the current mode. struct { /* Vertical layout: Lines 0 to [pixel_lines]: standard data fetch and drawing will occur. ... to [first_vsync_line]: refresh fetches will occur and border will be output. .. to [2.5 or 3 lines later]: vertical sync is output. ... to [total lines - 1]: refresh fetches will occur and border will be output. ... for one line: standard data fetch will occur, without drawing. */ int total_lines = 262; int pixel_lines = 192; int first_vsync_line = 227; // Maximum number of sprite slots to populate; // if sprites beyond this number should be visible // then the appropriate status information will be set. int maximum_visible_sprites = 4; // Set the position, in cycles, of the two interrupts, // within a line. struct { int column = 4; int row = 193; } end_of_frame_interrupt_position; int line_interrupt_position = -1; // Enables or disabled the recognition of the sprite // list terminator, and sets the terminator value. bool allow_sprite_terminator = true; uint8_t sprite_terminator = 0xd0; } mode_timing_; uint8_t line_interrupt_target_ = 0xff; uint8_t line_interrupt_counter_ = 0; bool enable_line_interrupts_ = false; bool line_interrupt_pending_ = false; ScreenMode screen_mode_; LineBuffer line_buffers_[313]; void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row); // There is a delay between reading into the line buffer and outputting from there to the screen. That delay // is observeable because reading time affects availability of memory accesses and therefore time in which // to update sprites and tiles, but writing time affects when the palette is used and when the collision flag // may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap // with the beginning of writing the next, hence the two separate line buffers. LineBufferPointer output_pointer_, fetch_pointer_; int fetch_line() const; bool is_vertical_blank() const; bool is_horizontal_blank() const; int masked_address(int address) const; void write_vram(uint8_t); void write_register(uint8_t); void write_palette(uint8_t); void write_register_indirect(uint8_t); uint8_t read_vram(); uint8_t read_register(); uint8_t read_palette(); uint8_t read_register_indirect(); void commit_register(int reg, uint8_t value); ScreenMode current_screen_mode() const { if(blank_display_) { return ScreenMode::Blank; } if constexpr (is_sega_vdp(personality)) { if(Storage::mode4_enable_) { return ScreenMode::SMSMode4; } } if constexpr (is_yamaha_vdp(personality)) { switch(Storage::mode_) { case 0b00001: return ScreenMode::Text; case 0b01001: return ScreenMode::YamahaText80; case 0b00010: return ScreenMode::MultiColour; case 0b00000: return ScreenMode::YamahaGraphics1; case 0b00100: return ScreenMode::YamahaGraphics2; case 0b01000: return ScreenMode::YamahaGraphics3; case 0b01100: return ScreenMode::YamahaGraphics4; case 0b10000: return ScreenMode::YamahaGraphics5; case 0b10100: return ScreenMode::YamahaGraphics6; case 0b11100: return ScreenMode::YamahaGraphics7; } } if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) { return ScreenMode::ColouredText; } if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) { return ScreenMode::Text; } if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) { return ScreenMode::Graphics; } if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) { return ScreenMode::MultiColour; } // TODO: undocumented TMS modes. return ScreenMode::Blank; } void do_external_slot(int access_column) { // Don't do anything if the required time for the access to become executable // has yet to pass. if(queued_access_ == MemoryAccess::None || access_column < minimum_access_column_) { return; } size_t address = ram_pointer_; ++ram_pointer_; if constexpr (is_yamaha_vdp(personality)) { const ScreenMode mode = current_screen_mode(); if(mode == ScreenMode::YamahaGraphics6 || mode == ScreenMode::YamahaGraphics7) { // Rotate address one to the right as the hardware accesses // the underlying banks of memory alternately but presents // them as if linear. address = (address >> 1) | (address << 16); } } switch(queued_access_) { default: break; case MemoryAccess::Write: if constexpr (is_sega_vdp(personality)) { if(Storage::cram_is_selected_) { // Adjust the palette. In a Master System blue has a slightly different // scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html constexpr uint8_t rg_scale[] = {0, 85, 170, 255}; constexpr uint8_t b_scale[] = {0, 104, 170, 255}; Storage::colour_ram_[address & 0x1f] = palette_pack( rg_scale[(read_ahead_buffer_ >> 0) & 3], rg_scale[(read_ahead_buffer_ >> 2) & 3], b_scale[(read_ahead_buffer_ >> 4) & 3] ); // Schedule a CRAM dot; this is scheduled for wherever it should appear // on screen. So it's wherever the output stream would be now. Which // is output_lag cycles ago from the point of view of the input stream. auto &dot = Storage::upcoming_cram_dots_.emplace_back(); dot.location.column = fetch_pointer_.column - output_lag; dot.location.row = fetch_pointer_.row; // Handle before this row conditionally; then handle after (or, more realistically, // exactly at the end of) naturally. if(dot.location.column < 0) { --dot.location.row; dot.location.column += 342; } dot.location.row += dot.location.column / 342; dot.location.column %= 342; dot.value = Storage::colour_ram_[address & 0x1f]; break; } } ram_[address & memory_mask(personality)] = read_ahead_buffer_; break; case MemoryAccess::Read: read_ahead_buffer_ = ram_[address & memory_mask(personality)]; break; } queued_access_ = MemoryAccess::None; } // Various fetchers. template void fetch_tms_refresh(int start, int end); template void fetch_tms_text(int start, int end); template void fetch_tms_character(int start, int end); template void fetch_yamaha_refresh(int start, int end); template void fetch_yamaha(int start, int end); template void fetch_sms(int start, int end); // A helper function to output the current border colour for // the number of cycles supplied. void output_border(int cycles, uint32_t cram_dot); // Output serialisation state. uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr; bool asked_for_write_area_ = false; // Output serialisers. void draw_tms_character(int start, int end); void draw_tms_text(int start, int end); void draw_sms(int start, int end, uint32_t cram_dot); }; #include "Fetch.hpp" #include "Draw.hpp" } } #endif /* TMS9918Base_hpp */