// // i8272.cpp // Clock Signal // // Created by Thomas Harte on 05/08/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "i8272.hpp" #include using namespace Intel; namespace { const uint8_t StatusRQM = 0x80; // Set: ready to send or receive from processor. const uint8_t StatusDIO = 0x40; // Set: data is expected to be taken from the 8272 by the processor. const uint8_t StatusNDM = 0x20; // Set: the execution phase of a data transfer command is ongoing and DMA mode is disabled. const uint8_t StatusCB = 0x10; // Set: the FDC is busy. const uint8_t StatusD3B = 0x08; // Set: drive 3 is seeking. const uint8_t StatusD2B = 0x04; // Set: drive 2 is seeking. const uint8_t StatusD1B = 0x02; // Set: drive 1 is seeking. const uint8_t StatusD0B = 0x01; // Set: drive 0 is seeking. } i8272::i8272(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) : Storage::Disk::MFMController(clock_rate, clock_rate_multiplier, revolutions_per_minute), main_status_(StatusRQM), interesting_event_mask_((int)Event8272::CommandByte), resume_point_(0), delay_time_(0), status_{0, 0, 0, 0} { posit_event((int)Event8272::CommandByte); } void i8272::run_for(Cycles cycles) { Storage::Disk::MFMController::run_for(cycles); // check for an expired timer if(delay_time_ > 0) { if(cycles.as_int() >= delay_time_) { delay_time_ = 0; posit_event((int)Event8272::Timer); } else { delay_time_ -= cycles.as_int(); } } // update seek status of any drives presently seeking for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::Seeking) { drives_[c].step_rate_counter += cycles.as_int(); int steps = drives_[c].step_rate_counter / (8000 * step_rate_time_); drives_[c].step_rate_counter %= (8000 * step_rate_time_); while(steps--) { if( (drives_[c].target_head_position == (int)drives_[c].head_position) || (drives_[c].drive->get_is_track_zero() && drives_[c].target_head_position == -1)) { drives_[c].phase = Drive::CompletedSeeking; if(drives_[c].target_head_position == -1) drives_[c].head_position = 0; main_status_ &= ~(1 << c); } else { int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1; drives_[c].drive->step(direction); drives_[c].head_position += direction; } } } } } void i8272::set_register(int address, uint8_t value) { // don't consider attempted sets to the status register if(!address) return; // if not ready for commands, do nothing if(!(main_status_ & StatusRQM)) return; // accumulate latest byte in the command byte sequence command_.push_back(value); posit_event((int)Event8272::CommandByte); } uint8_t i8272::get_register(int address) { if(address) { printf("8272 get data\n"); if(result_.empty()) return 0xff; uint8_t result = result_.back(); result_.pop_back(); if(result_.empty()) posit_event((int)Event8272::ResultEmpty); return result; } else { // printf("8272 get main status\n"); return main_status_; } } void i8272::set_disk(std::shared_ptr disk, int drive) { if(drive < 4 && drive >= 0) { drives_[drive].drive->set_disk(disk); } } #define BEGIN_SECTION() switch(resume_point_) { default: #define END_SECTION() } #define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = (int)mask; return; case __LINE__: #define FIND_HEADER() \ { \ find_header: WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \ if(event_type == (int)Event::IndexHole) index_hole_limit_--; \ else if(get_latest_token().type == Token::ID) goto header_found; \ \ if(index_hole_limit_) goto find_header; \ header_found: 0;\ } #define READ_HEADER() \ distance_into_header_ = 0; \ set_data_mode(Reading); \ { \ read_header: WAIT_FOR_EVENT(Event::Token); \ header_[distance_into_header_] = get_latest_token().byte_value; \ distance_into_header_++; \ if(distance_into_header_ != 7) goto read_header; \ } \ set_data_mode(Scanning); void i8272::posit_event(int event_type) { if(!(interesting_event_mask_ & event_type)) return; interesting_event_mask_ &= ~event_type; BEGIN_SECTION(); wait_for_command: set_data_mode(Storage::Disk::MFMController::DataMode::Scanning); main_status_ &= ~(StatusCB | StatusNDM); command_.clear(); wait_for_complete_command_sequence: main_status_ |= StatusRQM; WAIT_FOR_EVENT(Event8272::CommandByte) main_status_ &= ~StatusRQM; switch(command_[0] & 0x1f) { case 0x06: // read data if(command_.size() < 9) goto wait_for_complete_command_sequence; goto read_data; case 0x0b: // read deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; goto read_deleted_data; case 0x05: // write data if(command_.size() < 9) goto wait_for_complete_command_sequence; goto write_data; case 0x09: // write deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; goto write_deleted_data; case 0x02: // read track if(command_.size() < 9) goto wait_for_complete_command_sequence; goto read_track; case 0x0a: // read ID if(command_.size() < 2) goto wait_for_complete_command_sequence; goto read_id; case 0x0d: // format track if(command_.size() < 6) goto wait_for_complete_command_sequence; goto format_track; case 0x11: // scan low if(command_.size() < 9) goto wait_for_complete_command_sequence; goto scan_low; case 0x19: // scan low or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; goto scan_low_or_equal; case 0x1d: // scan high or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; goto scan_high_or_equal; case 0x07: // recalibrate if(command_.size() < 2) goto wait_for_complete_command_sequence; goto recalibrate; case 0x08: // sense interrupt status goto sense_interrupt_status; case 0x03: // specify if(command_.size() < 3) goto wait_for_complete_command_sequence; goto specify; case 0x04: // sense drive status if(command_.size() < 2) goto wait_for_complete_command_sequence; goto sense_drive_status; case 0x0f: // seek if(command_.size() < 3) goto wait_for_complete_command_sequence; goto seek; default: // invalid goto invalid; } read_data: printf("Read data, sector %02x\n", command_[4]); main_status_ |= StatusCB; if(!dma_mode_) main_status_ |= StatusNDM; set_drive(drives_[command_[1]&3].drive); set_is_double_density(command_[0] & 0x40); index_hole_limit_ = 2; find_next_sector: FIND_HEADER(); if(!index_hole_limit_) goto read_data_not_found; READ_HEADER(); if(header_[2] != command_[4]) goto find_next_sector; printf("Unimplemented!!\n"); goto wait_for_command; read_data_not_found: printf("Not found\n"); status_[1] |= 0x4; status_[0] = (status_[0] & ~0xc0) | 0x40; read_data_end: result_.push_back(header_[3]); result_.push_back(header_[2]); result_.push_back(header_[1]); result_.push_back(header_[0]); result_.push_back(status_[2]); result_.push_back(status_[1]); result_.push_back(status_[0]); goto post_result; read_deleted_data: printf("Read deleted data unimplemented!!\n"); goto wait_for_command; write_data: printf("Write data unimplemented!!\n"); goto wait_for_command; write_deleted_data: printf("Write deleted data unimplemented!!\n"); goto wait_for_command; read_track: printf("Read track unimplemented!!\n"); goto wait_for_command; read_id: printf("Read ID unimplemented!!\n"); goto wait_for_command; format_track: printf("Fromat track unimplemented!!\n"); goto wait_for_command; scan_low: printf("Scan low unimplemented!!\n"); goto wait_for_command; scan_low_or_equal: printf("Scan low or equal unimplemented!!\n"); goto wait_for_command; scan_high_or_equal: printf("Scan high or equal unimplemented!!\n"); goto wait_for_command; recalibrate: printf("Recalibrate\n"); drives_[command_[1]&3].phase = Drive::Seeking; drives_[command_[1]&3].permitted_steps = 77; drives_[command_[1]&3].target_head_position = -1; drives_[command_[1]&3].step_rate_counter = 0; main_status_ |= (1 << command_[1]&3); goto wait_for_command; sense_interrupt_status: printf("Sense interrupt status\n"); // Find the first drive that is in the CompletedSeeking state and return for that; // if none has done so then return a single 0x80. { int found_drive = -1; for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::CompletedSeeking) { found_drive = c; break; } } if(found_drive != -1) { drives_[found_drive].phase = Drive::NotSeeking; result_.push_back(drives_[found_drive].head_position); status_[0] = (uint8_t)found_drive | 0x20; result_.push_back(status_[0]); } else { result_.push_back(0x80); } } goto post_result; specify: printf("Specify\n"); step_rate_time_ = command_[1] &0xf0; // i.e. 16 to 240m head_unload_time_ = command_[1] & 0x0f; // i.e. 1 to 16ms head_load_time_ = command_[2] & ~1; // i.e. 2 to 254 ms in increments of 2ms dma_mode_ = !(command_[2] & 1); goto wait_for_command; sense_drive_status: printf("Sense drive status\n"); result_.push_back(status_[3]); goto post_result; seek: printf("Seek\n"); drives_[command_[1]&3].phase = Drive::Seeking; drives_[command_[1]&3].permitted_steps = -1; drives_[command_[1]&3].target_head_position = command_[2]; drives_[command_[1]&3].step_rate_counter = 0; main_status_ |= (1 << command_[1]&3); goto wait_for_command; invalid: // A no-op, causing the FDC to go back into standby mode. goto wait_for_command; post_result: main_status_ |= StatusRQM | StatusDIO; main_status_ &= ~StatusNDM; WAIT_FOR_EVENT(Event8272::ResultEmpty); main_status_ &= ~StatusDIO; goto wait_for_command; END_SECTION() }