// // TimedEventLoop.cpp // Clock Signal // // Created by Thomas Harte on 29/07/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "TimedEventLoop.hpp" #include "../NumberTheory/Factors.hpp" #include #include using namespace Storage; TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) : input_clock_rate_(input_clock_rate) {} void TimedEventLoop::run_for(const Cycles cycles) { int remaining_cycles = cycles.as_int(); #ifndef NDEBUG int cycles_advanced = 0; #endif while(cycles_until_event_ <= remaining_cycles) { #ifndef NDEBUG cycles_advanced += cycles_until_event_; #endif advance(cycles_until_event_); remaining_cycles -= cycles_until_event_; cycles_until_event_ = 0; process_next_event(); } if(remaining_cycles) { cycles_until_event_ -= remaining_cycles; #ifndef NDEBUG cycles_advanced += remaining_cycles; #endif advance(remaining_cycles); } assert(cycles_advanced == cycles.as_int()); assert(cycles_until_event_ > 0); } unsigned int TimedEventLoop::get_cycles_until_next_event() { return static_cast(std::max(cycles_until_event_, 0)); } unsigned int TimedEventLoop::get_input_clock_rate() { return input_clock_rate_; } void TimedEventLoop::reset_timer() { subcycles_until_event_.set_zero(); cycles_until_event_ = 0; } void TimedEventLoop::jump_to_next_event() { reset_timer(); process_next_event(); } void TimedEventLoop::set_next_event_time_interval(Time interval) { // Calculate [interval]*[input clock rate] + [subcycles until this event] // = interval.numerator * input clock / interval.denominator + subcycles.numerator / subcycles.denominator // = (interval.numerator * input clock * subcycles.denominator + subcycles.numerator * interval.denominator) / (interval.denominator * subcycles.denominator) int64_t denominator = static_cast(interval.clock_rate) * static_cast(subcycles_until_event_.clock_rate); int64_t numerator = static_cast(subcycles_until_event_.clock_rate) * static_cast(input_clock_rate_) * static_cast(interval.length) + static_cast(interval.clock_rate) * static_cast(subcycles_until_event_.length); // Simplify if necessary: try just simplifying the interval and recalculating; if that doesn't // work then try simplifying the whole thing. if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits::max()) { interval.simplify(); denominator = static_cast(interval.clock_rate) * static_cast(subcycles_until_event_.clock_rate); numerator = static_cast(subcycles_until_event_.clock_rate) * static_cast(input_clock_rate_) * static_cast(interval.length) + static_cast(interval.clock_rate) * static_cast(subcycles_until_event_.length); } if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits::max()) { int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator); denominator /= common_divisor; numerator /= common_divisor; } // If even that doesn't work then reduce precision. if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits::max()) { const double double_interval = interval.get(); const double double_subcycles_remaining = subcycles_until_event_.get(); const double output = double_interval * static_cast(input_clock_rate_) + double_subcycles_remaining; if(output < 1.0) { denominator = std::numeric_limits::max(); numerator = static_cast(denominator * output); } else { numerator = std::numeric_limits::max(); denominator = static_cast(numerator / output); } } // So this event will fire in the integral number of cycles from now, putting us at the remainder // number of subcycles const int addition = static_cast(numerator / denominator); assert(cycles_until_event_ == 0); assert(addition >= 0); if(addition < 0) { assert(false); } cycles_until_event_ += addition; subcycles_until_event_.length = static_cast(numerator % denominator); subcycles_until_event_.clock_rate = static_cast(denominator); subcycles_until_event_.simplify(); } Time TimedEventLoop::get_time_into_next_event() { // TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left]) Time zero; return zero; }