// // Electron.cpp // Clock Signal // // Created by Thomas Harte on 03/01/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "Electron.hpp" #include using namespace Electron; static const int cycles_per_line = 128; static const int cycles_per_frame = 312*cycles_per_line; static const int crt_cycles_multiplier = 8; static const int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line; Machine::Machine() : _interruptControl(0), _frameCycles(0), _outputPosition(0) { _crt = new Outputs::CRT(crt_cycles_per_line, 312, 1, 1); _interruptStatus = 0x02; setup6502(); } Machine::~Machine() { } unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { unsigned int cycles = 1; if(address < 0x8000) { if(isReadOperation(operation)) { *value = _ram[address]; } else { _ram[address] = *value; // TODO: range check on address; a lot of the time the machine will be running code outside of // the screen area, meaning that no update is required. // if (address update_display(); } // TODO: RAM timing for Modes 0–3 cycles += (_frameCycles&1)^1; } else { if(address >= 0xc000) { if((address & 0xff00) == 0xfe00) { // printf("%c: %02x: ", isReadOperation(operation) ? 'r' : 'w', *value); switch(address&0xf) { case 0x0: if(isReadOperation(operation)) { *value = _interruptStatus; _interruptStatus &= ~0x02; } else { _interruptControl = *value; evaluate_interrupts(); } break; case 0x1: break; case 0x2: _startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1); break; case 0x3: _startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9); break; case 0x4: printf("Cassette\n"); break; case 0x5: if(!isReadOperation(operation)) { const uint8_t interruptDisable = (*value)&0xf0; if( interruptDisable ) { if( interruptDisable&0x10 ) _interruptStatus &= ~InterruptDisplayEnd; if( interruptDisable&0x20 ) _interruptStatus &= ~InterruptRealTimeClock; if( interruptDisable&0x40 ) _interruptStatus &= ~InterruptHighToneDetect; evaluate_interrupts(); // TODO: NMI (?) } // else { uint8_t nextROM = (*value)&0xf; // if(nextROM&0x08) // { // _activeRom = (Electron::ROMSlot)(nextROM&0x0e); // printf("%d -> Paged %d\n", nextROM, _activeRom); // } if((_activeRom&12) != 8 || nextROM&8) { _activeRom = (Electron::ROMSlot)nextROM; } // else // { // printf("Ignored!"); // } // printf("%d -> Paged %d\n", nextROM, _activeRom); } } break; case 0x6: printf("Counter\n"); break; case 0x7: printf("Misc. control\n"); break; default: update_display(); // printf("Palette\n"); break; } } else { if(isReadOperation(operation)) *value = _os[address & 16383]; } } else { if(isReadOperation(operation)) { switch(_activeRom) { case ROMSlotBASIC: case ROMSlotBASIC+1: *value = _basic[address & 16383]; break; case ROMSlotKeyboard: case ROMSlotKeyboard+1: *value = 0xf0; break; default: *value = 0xff; break; } } } } _frameCycles += cycles; if(_frameCycles == cycles_per_frame) { update_display(); _frameCycles = 0; } if(_frameCycles == 128*128) signal_interrupt(InterruptRealTimeClock); if(_frameCycles == 284*128) signal_interrupt(InterruptDisplayEnd); return cycles; } void Machine::set_rom(ROMSlot slot, size_t length, const uint8_t *data) { uint8_t *target = nullptr; switch(slot) { case ROMSlotBASIC: target = _basic; break; case ROMSlotOS: target = _os; break; default: return; } memcpy(target, data, std::min((size_t)16384, length)); } inline void Machine::signal_interrupt(Electron::Interrupt interrupt) { _interruptStatus |= (interrupt << 2); evaluate_interrupts(); } inline void Machine::evaluate_interrupts() { if(_interruptStatus & _interruptControl) { _interruptStatus |= 1; } set_irq_line(_interruptStatus & 1); } inline void Machine::update_display() { const int end_of_hsync = 3 * cycles_per_line; if(_frameCycles >= end_of_hsync) { // assert sync for the first three lines of the display, with a break at the end for horizontal alignment if(_outputPosition < end_of_hsync) { for(int c = 0; c < 3; c++) { _crt->output_sync(119 * crt_cycles_multiplier); _crt->output_blank(9 * crt_cycles_multiplier); } _outputPosition = end_of_hsync; } while(_outputPosition >= end_of_hsync && _outputPosition < _frameCycles) { const int current_line = _outputPosition >> 7; const int line_position = _outputPosition & 127; // all lines then start with 9 cycles of sync if(!line_position) { _crt->output_sync(9 * crt_cycles_multiplier); _outputPosition += 9; } else { // on lines prior to 28 or after or equal to 284, or on a line that is equal to 8 or 9 modulo 10 in a line-spaced mode, // the line is then definitely blank. if(current_line < 28 || current_line >= 284) { if(line_position == 9) { _crt->output_blank(119 * crt_cycles_multiplier); _outputPosition = (_outputPosition + 119) % cycles_per_frame;; } } else { // there are then 15 cycles of blank, 80 cycles of pixels, and 24 further cycles of blank if(line_position == 9) { _crt->output_blank(15 * crt_cycles_multiplier); _outputPosition += 15; _crt->allocate_write_area(80 * crt_cycles_multiplier); _currentLine = (uint8_t *)_crt->get_write_target_for_buffer(0); if(current_line == 28) _startLineAddress = _startScreenAddress; _currentScreenAddress = _startLineAddress; } if(line_position >= 24 && line_position < 104) { if(_currentLine) { if(!(line_position&1)) { uint8_t pixels = _ram[_currentScreenAddress]; _currentScreenAddress += 8; int output_ptr = (line_position - 24) << 3; for(int c = 0; c < 16; c+=2) { _currentLine[output_ptr + c] = _currentLine[output_ptr + c + 1] = (pixels&0x80) ? 0 : 7; pixels <<= 1; } } } _outputPosition++; } if(line_position == 104) { if(!((current_line - 27)&7)) { _startLineAddress += 40*8 - 7; } else _startLineAddress++; _currentLine = nullptr; _crt->output_data(80 * crt_cycles_multiplier); _crt->output_blank(24 * crt_cycles_multiplier); _outputPosition += 24; } } } } } } const char *Machine::get_signal_decoder() { return "vec4 sample(vec2 coordinate)\n" "{\n" "float texValue = texture(texID, srcCoordinatesVarying).r;" // step(mod(texValue, 4.0), 2.0) "return vec4( step(mod(texValue, 8.0/256.0), 4.0/256.0), step(mod(texValue, 4.0/256.0), 2.0/256.0), step(mod(texValue, 2.0/256.0), 1.0/256.0), 1.0);\n" "}"; }