// // 68000Implementation.hpp // Clock Signal // // Created by Thomas Harte on 10/03/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // template void Processor::run_for(HalfCycles duration) { HalfCycles remaining_duration = duration + half_cycles_left_to_run_; while(remaining_duration > HalfCycles(0)) { /* FIND THE NEXT MICRO-OP IF UNKNOWN. */ if(active_step_->is_terminal()) { while(true) { // If there are any more micro-operations available, just move onwards. if(active_micro_op_ && !active_micro_op_->is_terminal()) { ++active_micro_op_; } else { // Either the micro-operations for this instruction have been exhausted, or // no instruction was ongoing. Either way, do a standard instruction operation. // TODO: unless an interrupt is pending, or the trap flag is set. const uint16_t next_instruction = prefetch_queue_.halves.high.full; if(!instructions[next_instruction].micro_operations) { // TODO: once all instructions are implemnted, this should be an instruction error. std::cerr << "68000 Abilities exhausted; can't manage instruction " << std::hex << next_instruction << std::endl; return; } active_program_ = &instructions[next_instruction]; active_micro_op_ = active_program_->micro_operations; } switch(active_micro_op_->action) { default: std::cerr << "Unhandled 68000 micro op action " << std::hex << active_micro_op_->action << std::endl; break; case int(MicroOp::Action::None): break; case int(MicroOp::Action::PerformOperation): switch(active_program_->operation) { case Operation::ABCD: { // Pull out the two halves, for simplicity. const uint8_t source = active_program_->source->halves.low.halves.low; const uint8_t destination = active_program_->destination->halves.low.halves.low; // Perform the BCD add by evaluating the two nibbles separately. int result = (destination & 0xf) + (source & 0xf) + (extend_flag_ ? 1 : 0); if(result > 0x09) result += 0x06; result += (destination & 0xf0) + (source & 0xf0); if(result > 0x99) result += 0x60; // Set all flags essentially as if this were normal addition. zero_flag_ |= result & 0xff; extend_flag_ = carry_flag_ = result & ~0xff; negative_flag_ = result & 0x80; overflow_flag_ = ~(source ^ destination) & (destination ^ result) & 0x80; // Store the result. active_program_->destination->halves.low.halves.low = uint8_t(result); } break; case Operation::SBCD: { // Pull out the two halves, for simplicity. const uint8_t source = active_program_->source->halves.low.halves.low; const uint8_t destination = active_program_->destination->halves.low.halves.low; // Perform the BCD add by evaluating the two nibbles separately. int result = (destination & 0xf) - (source & 0xf) - (extend_flag_ ? 1 : 0); if(result > 0x09) result -= 0x06; result += (destination & 0xf0) - (source & 0xf0); if(result > 0x99) result -= 0x60; // Set all flags essentially as if this were normal subtraction. zero_flag_ |= result & 0xff; extend_flag_ = carry_flag_ = result & ~0xff; negative_flag_ = result & 0x80; overflow_flag_ = (source ^ destination) & (destination ^ result) & 0x80; // Store the result. active_program_->destination->halves.low.halves.low = uint8_t(result); } break; /* MOVE.b, MOVE.l and MOVE.w: move the least significant byte or word, or the entire long word, and set negative, zero, overflow and carry as appropriate. */ case Operation::MOVEb: zero_flag_ = active_program_->destination->halves.low.halves.low = active_program_->source->halves.low.halves.low; negative_flag_ = zero_flag_ & 0x80; overflow_flag_ = carry_flag_ = 0; break; case Operation::MOVEw: zero_flag_ = active_program_->destination->halves.low.full = active_program_->source->halves.low.full; negative_flag_ = zero_flag_ & 0x8000; overflow_flag_ = carry_flag_ = 0; break; case Operation::MOVEl: zero_flag_ = active_program_->destination->full = active_program_->source->full; negative_flag_ = zero_flag_ & 0x80000000; overflow_flag_ = carry_flag_ = 0; break; /* MOVEA.l: move the entire long word; MOVEA.w: move the least significant word and sign extend it. Neither sets any flags. */ case Operation::MOVEAw: active_program_->destination->halves.low.full = active_program_->source->halves.low.full; active_program_->destination->halves.high.full = (active_program_->destination->halves.low.full & 0x8000) ? 0xffff : 0; break; case Operation::MOVEAl: active_program_->destination->full = active_program_->source->full; break; default: std::cerr << "Should do something with program operation " << int(active_program_->operation) << std::endl; break; } break; case int(MicroOp::Action::SetMoveFlagsb): zero_flag_ = active_program_->source->halves.low.halves.low; negative_flag_ = zero_flag_ & 0x80; overflow_flag_ = carry_flag_ = 0; break; case int(MicroOp::Action::SetMoveFlagsw): zero_flag_ = active_program_->source->halves.low.full; negative_flag_ = zero_flag_ & 0x8000; overflow_flag_ = carry_flag_ = 0; break; case int(MicroOp::Action::SetMoveFlagsl): zero_flag_ = active_program_->source->full; negative_flag_ = zero_flag_ & 0x80000000; overflow_flag_ = carry_flag_ = 0; break; case int(MicroOp::Action::Decrement1): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full -= 1; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full -= 1; break; case int(MicroOp::Action::Decrement2): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full -= 2; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full -= 2; break; case int(MicroOp::Action::Decrement4): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full -= 4; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full -= 4; break; case int(MicroOp::Action::Increment1): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full += 1; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full += 1; break; case int(MicroOp::Action::Increment2): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full += 2; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full += 2; break; case int(MicroOp::Action::Increment4): if(active_micro_op_->action & MicroOp::SourceMask) active_program_->source->full += 4; if(active_micro_op_->action & MicroOp::DestinationMask) active_program_->destination->full += 4; break; case int(MicroOp::Action::SignExtendWord): if(active_micro_op_->action & MicroOp::SourceMask) { active_program_->source->halves.high.full = (active_program_->source->halves.low.full & 0x8000) ? 0xffff : 0x0000; } if(active_micro_op_->action & MicroOp::DestinationMask) { active_program_->destination->halves.high.full = (active_program_->destination->halves.low.full & 0x8000) ? 0xffff : 0x0000; } break; case int(MicroOp::Action::SignExtendByte): if(active_micro_op_->action & MicroOp::SourceMask) { active_program_->source->full = (active_program_->source->full & 0xff) | (active_program_->source->full & 0x80) ? 0xffffff : 0x000000; } if(active_micro_op_->action & MicroOp::DestinationMask) { active_program_->destination->full = (active_program_->destination->full & 0xff) | (active_program_->destination->full & 0x80) ? 0xffffff : 0x000000; } break; case int(MicroOp::Action::CalcD16An) | MicroOp::SourceMask: effective_address_[0] = int16_t(prefetch_queue_.halves.high.full) + active_program_->source->full; break; case int(MicroOp::Action::CalcD16An) | MicroOp::DestinationMask: effective_address_[1] = int16_t(prefetch_queue_.halves.high.full) + active_program_->destination->full; break; case int(MicroOp::Action::CalcD16An) | MicroOp::SourceMask | MicroOp::DestinationMask: effective_address_[0] = int16_t(prefetch_queue_.halves.high.full) + active_program_->source->full; effective_address_[1] = int16_t(prefetch_queue_.halves.low.full) + active_program_->destination->full; break; // TODO: permit as below for DestinationMask and SourceMask|DestinationMask; would prefer to test first. #define CalculateD8AnXn(data, source, target) {\ const auto register_index = (data.full >> 12) & 7; \ const RegisterPair32 &displacement = (data.full & 0x8000) ? address_[register_index] : data_[register_index]; \ target = int8_t(data.halves.low) + source->full; \ \ if(data.full & 0x800) { \ effective_address_[0] += displacement.halves.low.full; \ } else { \ effective_address_[0] += displacement.full; \ } \ } case int(MicroOp::Action::CalcD8AnXn) | MicroOp::SourceMask: { CalculateD8AnXn(prefetch_queue_.halves.high, active_program_->source, effective_address_[0]); } break; case int(MicroOp::Action::CalcD8AnXn) | MicroOp::DestinationMask: { CalculateD8AnXn(prefetch_queue_.halves.high, active_program_->destination, effective_address_[1]); } break; case int(MicroOp::Action::CalcD8AnXn) | MicroOp::SourceMask | MicroOp::DestinationMask: { CalculateD8AnXn(prefetch_queue_.halves.high, active_program_->source, effective_address_[0]); CalculateD8AnXn(prefetch_queue_.halves.low, active_program_->destination, effective_address_[1]); } break; #undef CalculateD8AnXn case int(MicroOp::Action::AssembleWordFromPrefetch) | MicroOp::SourceMask: bus_data_[0] = prefetch_queue_.full; break; case int(MicroOp::Action::AssembleWordFromPrefetch) | MicroOp::DestinationMask: bus_data_[1] = prefetch_queue_.full; break; } // If we've got to a micro-op that includes bus steps, break out of this loop. if(!active_micro_op_->is_terminal()) { active_step_ = active_micro_op_->bus_program; break; } } } /* PERFORM THE CURRENT BUS STEP'S MICROCYCLE. */ // Check for DTack if this isn't being treated implicitly. if(!dtack_is_implicit) { if(active_step_->microcycle.data_select_active() && !dtack_) { // TODO: perform wait state. continue; } } // TODO: synchronous bus. // TODO: check for bus error. // Perform the microcycle. remaining_duration -= active_step_->microcycle.length + bus_handler_.perform_bus_operation(active_step_->microcycle, is_supervisor_); /* PERFORM THE BUS STEP'S ACTION. */ switch(active_step_->action) { default: std::cerr << "Unimplemented 68000 bus step action: " << int(active_step_->action) << std::endl; return; break; case BusStep::Action::None: break; case BusStep::Action::IncrementEffectiveAddress0: effective_address_[0] += 2; break; case BusStep::Action::IncrementEffectiveAddress1: effective_address_[1] += 2; break; case BusStep::Action::IncrementProgramCounter: program_counter_.full += 2; break; case BusStep::Action::AdvancePrefetch: prefetch_queue_.halves.high = prefetch_queue_.halves.low; break; } // Move to the next bus step. ++ active_step_; } half_cycles_left_to_run_ = remaining_duration; } template ProcessorState Processor::get_state() { write_back_stack_pointer(); State state; memcpy(state.data, data_, sizeof(state.data)); memcpy(state.address, address_, sizeof(state.address)); state.user_stack_pointer = stack_pointers_[0].full; state.supervisor_stack_pointer = stack_pointers_[1].full; // TODO: rest of status word: interrupt level, trace flag. state.status = (carry_flag_ ? 0x0001 : 0x0000) | (overflow_flag_ ? 0x0002 : 0x0000) | (zero_flag_ ? 0x0000 : 0x0004) | (negative_flag_ ? 0x0008 : 0x0000) | (extend_flag_ ? 0x0010 : 0x0000) | (is_supervisor_ ? 0x2000 : 0x0000); return state; } template void Processor::set_state(const ProcessorState &state) { memcpy(data_, state.data, sizeof(state.data)); memcpy(address_, state.address, sizeof(state.address)); stack_pointers_[0].full = state.user_stack_pointer; stack_pointers_[1].full = state.supervisor_stack_pointer; carry_flag_ = state.status & 0x0001; overflow_flag_ = state.status & 0x0002; zero_flag_ = (state.status & 0x0004) ^ 0x0004; negative_flag_ = state.status & 0x0008; extend_flag_ = state.status & 0x0010; is_supervisor_ = (state.status >> 13) & 1; address_[7] = stack_pointers_[is_supervisor_]; // TODO: rest of status word: interrupt level, trace flag. }