// // CSMachine.m // Clock Signal // // Created by Thomas Harte on 04/01/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #import "CSMachine.h" #import "CSMachine+Target.h" #include "CSROMFetcher.hpp" #import "CSHighPrecisionTimer.h" #include "MediaTarget.hpp" #include "JoystickMachine.hpp" #include "KeyboardMachine.hpp" #include "KeyCodes.h" #include "MachineForTarget.hpp" #include "StandardOptions.hpp" #include "Typer.hpp" #include "../../../../Activity/Observer.hpp" #include "../../../../ClockReceiver/TimeTypes.hpp" #include "../../../../ClockReceiver/ScanSynchroniser.hpp" #import "CSStaticAnalyser+TargetVector.h" #import "NSBundle+DataResource.h" #import "NSData+StdVector.h" #include #include #import #include #include "../../../../Outputs/OpenGL/ScanTarget.hpp" #include "../../../../Outputs/OpenGL/Screenshot.hpp" @interface CSMachine() - (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length; - (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker; - (void)addLED:(NSString *)led; @end struct LockProtectedDelegate { // Contractual promise is: machine, the pointer **and** the object **, may be accessed only // in sections protected by the machineAccessLock; NSLock *machineAccessLock; __unsafe_unretained CSMachine *machine; }; struct SpeakerDelegate: public Outputs::Speaker::Speaker::Delegate, public LockProtectedDelegate { void speaker_did_complete_samples(Outputs::Speaker::Speaker *speaker, const std::vector &buffer) final { [machineAccessLock lock]; [machine speaker:speaker didCompleteSamples:buffer.data() length:(int)buffer.size()]; [machineAccessLock unlock]; } void speaker_did_change_input_clock(Outputs::Speaker::Speaker *speaker) final { [machineAccessLock lock]; [machine speakerDidChangeInputClock:speaker]; [machineAccessLock unlock]; } }; struct ActivityObserver: public Activity::Observer { void register_led(const std::string &name) final { [machine addLED:[NSString stringWithUTF8String:name.c_str()]]; } void set_led_status(const std::string &name, bool lit) final { [machine.delegate machine:machine led:[NSString stringWithUTF8String:name.c_str()] didChangeToLit:lit]; } void announce_drive_event(const std::string &name, DriveEvent event) final { [machine.delegate machine:machine ledShouldBlink:[NSString stringWithUTF8String:name.c_str()]]; } __unsafe_unretained CSMachine *machine; }; @interface CSMissingROM (Mutability) @property (nonatomic, nonnull, copy) NSString *machineName; @property (nonatomic, nonnull, copy) NSString *fileName; @property (nonatomic, nullable, copy) NSString *descriptiveName; @property (nonatomic, readwrite) NSUInteger size; @property (nonatomic, copy) NSArray *crc32s; @end @implementation CSMissingROM { NSString *_machineName; NSString *_fileName; NSString *_descriptiveName; NSUInteger _size; NSArray *_crc32s; } - (NSString *)machineName { return _machineName; } - (void)setMachineName:(NSString *)machineName { _machineName = [machineName copy]; } - (NSString *)fileName { return _fileName; } - (void)setFileName:(NSString *)fileName { _fileName = [fileName copy]; } - (NSString *)descriptiveName { return _descriptiveName; } - (void)setDescriptiveName:(NSString *)descriptiveName { _descriptiveName = [descriptiveName copy]; } - (NSUInteger)size { return _size; } - (void)setSize:(NSUInteger)size { _size = size; } - (NSArray *)crc32s { return _crc32s; } - (void)setCrc32s:(NSArray *)crc32s { _crc32s = [crc32s copy]; } - (NSString *)description { return [NSString stringWithFormat:@"%@/%@, %lu bytes, CRCs: %@", _fileName, _descriptiveName, (unsigned long)_size, _crc32s]; } @end @implementation CSMachine { SpeakerDelegate _speakerDelegate; ActivityObserver _activityObserver; NSLock *_delegateMachineAccessLock; CSStaticAnalyser *_analyser; std::unique_ptr _machine; JoystickMachine::Machine *_joystickMachine; CSJoystickManager *_joystickManager; std::bitset<65536> _depressedKeys; NSMutableArray *_leds; CSHighPrecisionTimer *_timer; CGSize _pixelSize; std::atomic_flag _isUpdating; Time::Nanos _syncTime; Time::Nanos _timeDiff; double _refreshPeriod; BOOL _isSyncLocking; Time::ScanSynchroniser _scanSynchroniser; NSTimer *_joystickTimer; std::unique_ptr _scanTarget; } - (instancetype)initWithAnalyser:(CSStaticAnalyser *)result missingROMs:(inout NSMutableArray *)missingROMs { self = [super init]; if(self) { _analyser = result; Machine::Error error; std::vector missing_roms; _machine.reset(Machine::MachineForTargets(_analyser.targets, CSROMFetcher(&missing_roms), error)); if(!_machine) { for(const auto &missing_rom : missing_roms) { CSMissingROM *rom = [[CSMissingROM alloc] init]; // Copy/convert the primitive fields. rom.machineName = [NSString stringWithUTF8String:missing_rom.machine_name.c_str()]; rom.fileName = [NSString stringWithUTF8String:missing_rom.file_name.c_str()]; rom.descriptiveName = missing_rom.descriptive_name.empty() ? nil : [NSString stringWithUTF8String:missing_rom.descriptive_name.c_str()]; rom.size = missing_rom.size; // Convert the CRC list. NSMutableArray *crc32s = [[NSMutableArray alloc] init]; for(const auto &crc : missing_rom.crc32s) { [crc32s addObject:@(crc)]; } rom.crc32s = [crc32s copy]; // Add to the missing list. [missingROMs addObject:rom]; } return nil; } // Use the keyboard as a joystick if the machine has no keyboard, or if it has a 'non-exclusive' keyboard. _inputMode = (_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive()) ? CSMachineKeyboardInputModeKeyboardPhysical : CSMachineKeyboardInputModeJoystick; _leds = [[NSMutableArray alloc] init]; Activity::Source *const activity_source = _machine->activity_source(); if(activity_source) { _activityObserver.machine = self; activity_source->set_activity_observer(&_activityObserver); } _delegateMachineAccessLock = [[NSLock alloc] init]; _speakerDelegate.machine = self; _speakerDelegate.machineAccessLock = _delegateMachineAccessLock; _joystickMachine = _machine->joystick_machine(); [self updateJoystickTimer]; _isUpdating.clear(); } return self; } - (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length { [self.audioQueue enqueueAudioBuffer:samples numberOfSamples:(unsigned int)length]; } - (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker { [self.delegate machineSpeakerDidChangeInputClock:self]; } - (void)dealloc { [_joystickTimer invalidate]; // The two delegate's references to this machine are nilled out here because close_output may result // in a data flush, which might cause an audio callback, which could cause the audio queue to decide // that it's out of data, resulting in an attempt further to run the machine while it is dealloc'ing. // // They are nilled inside an explicit lock because that allows the delegates to protect their entire // call into the machine, not just the pointer access. [_delegateMachineAccessLock lock]; _speakerDelegate.machine = nil; [_delegateMachineAccessLock unlock]; [_view performWithGLContext:^{ @synchronized(self) { self->_scanTarget.reset(); } }]; } - (float)idealSamplingRateFromRange:(NSRange)range { @synchronized(self) { Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker(); if(speaker) { return speaker->get_ideal_clock_rate_in_range((float)range.location, (float)(range.location + range.length)); } return 0; } } - (BOOL)isStereo { @synchronized(self) { Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker(); if(speaker) { return speaker->get_is_stereo(); } return NO; } } - (void)setAudioSamplingRate:(float)samplingRate bufferSize:(NSUInteger)bufferSize stereo:(BOOL)stereo { @synchronized(self) { [self setSpeakerDelegate:&_speakerDelegate sampleRate:samplingRate bufferSize:bufferSize stereo:stereo]; } } - (BOOL)setSpeakerDelegate:(Outputs::Speaker::Speaker::Delegate *)delegate sampleRate:(float)sampleRate bufferSize:(NSUInteger)bufferSize stereo:(BOOL)stereo { @synchronized(self) { Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker(); if(speaker) { speaker->set_output_rate(sampleRate, (int)bufferSize, stereo); speaker->set_delegate(delegate); return YES; } return NO; } } - (void)updateJoystickTimer { // Joysticks updates are scheduled for a nominal 200 polls/second, using a plain old NSTimer. if(_joystickMachine && _joystickManager) { _joystickTimer = [NSTimer scheduledTimerWithTimeInterval:1.0 / 200.0 target:self selector:@selector(updateJoysticks) userInfo:nil repeats:YES]; } else { [_joystickTimer invalidate]; _joystickTimer = nil; } } - (void)updateJoysticks { [_joystickManager update]; // TODO: configurable mapping from physical joypad inputs to machine inputs. // Until then, apply a default mapping. @synchronized(self) { size_t c = 0; auto &machine_joysticks = _joystickMachine->get_joysticks(); for(CSJoystick *joystick in _joystickManager.joysticks) { size_t target = c % machine_joysticks.size(); ++c; // Post the first two analogue axes presented by the controller as horizontal and vertical inputs, // unless the user seems to be using a hat. // SDL will return a value in the range [-32768, 32767], so map from that to [0, 1.0] if(!joystick.hats.count || !joystick.hats[0].direction) { if(joystick.axes.count > 0) { const float x_axis = joystick.axes[0].position; machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Horizontal), x_axis); } if(joystick.axes.count > 1) { const float y_axis = joystick.axes[1].position; machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Vertical), y_axis); } } else { // Forward hats as directions; hats always override analogue inputs. for(CSJoystickHat *hat in joystick.hats) { machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Up), !!(hat.direction & CSJoystickHatDirectionUp)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Down), !!(hat.direction & CSJoystickHatDirectionDown)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Left), !!(hat.direction & CSJoystickHatDirectionLeft)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Right), !!(hat.direction & CSJoystickHatDirectionRight)); } } // Forward all fire buttons, mapping as a function of index. if(machine_joysticks[target]->get_number_of_fire_buttons()) { std::vector button_states((size_t)machine_joysticks[target]->get_number_of_fire_buttons()); for(CSJoystickButton *button in joystick.buttons) { if(button.isPressed) button_states[(size_t)(((int)button.index - 1) % machine_joysticks[target]->get_number_of_fire_buttons())] = true; } for(size_t index = 0; index < button_states.size(); ++index) { machine_joysticks[target]->set_input( Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Fire, index), button_states[index]); } } } } } - (void)setView:(CSOpenGLView *)view aspectRatio:(float)aspectRatio { _view = view; _view.displayLinkDelegate = self; [view performWithGLContext:^{ [self setupOutputWithAspectRatio:aspectRatio]; } flushDrawable:NO]; } - (void)setupOutputWithAspectRatio:(float)aspectRatio { _scanTarget = std::make_unique(); _machine->crt_machine()->set_scan_target(_scanTarget.get()); } - (void)updateViewForPixelSize:(CGSize)pixelSize { // _pixelSize = pixelSize; // @synchronized(self) { // const auto scan_status = _machine->crt_machine()->get_scan_status(); // NSLog(@"FPS (hopefully): %0.2f [retrace: %0.4f]", 1.0f / scan_status.field_duration, scan_status.retrace_duration); // } } - (void)drawViewForPixelSize:(CGSize)pixelSize { _scanTarget->draw((int)pixelSize.width, (int)pixelSize.height); } - (void)paste:(NSString *)paste { KeyboardMachine::Machine *keyboardMachine = _machine->keyboard_machine(); if(keyboardMachine) keyboardMachine->type_string([paste UTF8String]); } - (NSBitmapImageRep *)imageRepresentation { // Grab a screenshot. Outputs::Display::OpenGL::Screenshot screenshot(4, 3); // Generate an NSBitmapImageRep containing the screenshot's data. NSBitmapImageRep *const result = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes:NULL pixelsWide:screenshot.width pixelsHigh:screenshot.height bitsPerSample:8 samplesPerPixel:4 hasAlpha:YES isPlanar:NO colorSpaceName:NSDeviceRGBColorSpace bytesPerRow:4 * screenshot.width bitsPerPixel:0]; memcpy(result.bitmapData, screenshot.pixel_data.data(), size_t(screenshot.width*screenshot.height*4)); return result; } - (void)applyMedia:(const Analyser::Static::Media &)media { @synchronized(self) { MediaTarget::Machine *const mediaTarget = _machine->media_target(); if(mediaTarget) mediaTarget->insert_media(media); } } - (void)setJoystickManager:(CSJoystickManager *)joystickManager { _joystickManager = joystickManager; if(_joystickMachine) { @synchronized(self) { auto &machine_joysticks = _joystickMachine->get_joysticks(); for(const auto &joystick: machine_joysticks) { joystick->reset_all_inputs(); } } } [self updateJoystickTimer]; } - (void)setKey:(uint16_t)key characters:(NSString *)characters isPressed:(BOOL)isPressed { auto keyboard_machine = _machine->keyboard_machine(); if(keyboard_machine && (self.inputMode != CSMachineKeyboardInputModeJoystick || !keyboard_machine->get_keyboard().is_exclusive())) { Inputs::Keyboard::Key mapped_key = Inputs::Keyboard::Key::Help; // Make an innocuous default guess. #define BIND(source, dest) case source: mapped_key = Inputs::Keyboard::Key::dest; break; // Connect the Carbon-era Mac keyboard scancodes to Clock Signal's 'universal' enumeration in order // to pass into the platform-neutral realm. switch(key) { BIND(VK_ANSI_0, k0); BIND(VK_ANSI_1, k1); BIND(VK_ANSI_2, k2); BIND(VK_ANSI_3, k3); BIND(VK_ANSI_4, k4); BIND(VK_ANSI_5, k5); BIND(VK_ANSI_6, k6); BIND(VK_ANSI_7, k7); BIND(VK_ANSI_8, k8); BIND(VK_ANSI_9, k9); BIND(VK_ANSI_Q, Q); BIND(VK_ANSI_W, W); BIND(VK_ANSI_E, E); BIND(VK_ANSI_R, R); BIND(VK_ANSI_T, T); BIND(VK_ANSI_Y, Y); BIND(VK_ANSI_U, U); BIND(VK_ANSI_I, I); BIND(VK_ANSI_O, O); BIND(VK_ANSI_P, P); BIND(VK_ANSI_A, A); BIND(VK_ANSI_S, S); BIND(VK_ANSI_D, D); BIND(VK_ANSI_F, F); BIND(VK_ANSI_G, G); BIND(VK_ANSI_H, H); BIND(VK_ANSI_J, J); BIND(VK_ANSI_K, K); BIND(VK_ANSI_L, L); BIND(VK_ANSI_Z, Z); BIND(VK_ANSI_X, X); BIND(VK_ANSI_C, C); BIND(VK_ANSI_V, V); BIND(VK_ANSI_B, B); BIND(VK_ANSI_N, N); BIND(VK_ANSI_M, M); BIND(VK_F1, F1); BIND(VK_F2, F2); BIND(VK_F3, F3); BIND(VK_F4, F4); BIND(VK_F5, F5); BIND(VK_F6, F6); BIND(VK_F7, F7); BIND(VK_F8, F8); BIND(VK_F9, F9); BIND(VK_F10, F10); BIND(VK_F11, F11); BIND(VK_F12, F12); BIND(VK_ANSI_Keypad0, Keypad0); BIND(VK_ANSI_Keypad1, Keypad1); BIND(VK_ANSI_Keypad2, Keypad2); BIND(VK_ANSI_Keypad3, Keypad3); BIND(VK_ANSI_Keypad4, Keypad4); BIND(VK_ANSI_Keypad5, Keypad5); BIND(VK_ANSI_Keypad6, Keypad6); BIND(VK_ANSI_Keypad7, Keypad7); BIND(VK_ANSI_Keypad8, Keypad8); BIND(VK_ANSI_Keypad9, Keypad9); BIND(VK_ANSI_Equal, Equals); BIND(VK_ANSI_Minus, Hyphen); BIND(VK_ANSI_RightBracket, CloseSquareBracket); BIND(VK_ANSI_LeftBracket, OpenSquareBracket); BIND(VK_ANSI_Quote, Quote); BIND(VK_ANSI_Grave, BackTick); BIND(VK_ANSI_Semicolon, Semicolon); BIND(VK_ANSI_Backslash, Backslash); BIND(VK_ANSI_Slash, ForwardSlash); BIND(VK_ANSI_Comma, Comma); BIND(VK_ANSI_Period, FullStop); BIND(VK_ANSI_KeypadDecimal, KeypadDecimalPoint); BIND(VK_ANSI_KeypadEquals, KeypadEquals); BIND(VK_ANSI_KeypadMultiply, KeypadAsterisk); BIND(VK_ANSI_KeypadDivide, KeypadSlash); BIND(VK_ANSI_KeypadPlus, KeypadPlus); BIND(VK_ANSI_KeypadMinus, KeypadMinus); BIND(VK_ANSI_KeypadClear, KeypadDelete); BIND(VK_ANSI_KeypadEnter, KeypadEnter); BIND(VK_Return, Enter); BIND(VK_Tab, Tab); BIND(VK_Space, Space); BIND(VK_Delete, Backspace); BIND(VK_Control, LeftControl); BIND(VK_Option, LeftOption); BIND(VK_Command, LeftMeta); BIND(VK_Shift, LeftShift); BIND(VK_RightControl, RightControl); BIND(VK_RightOption, RightOption); BIND(VK_Escape, Escape); BIND(VK_CapsLock, CapsLock); BIND(VK_Home, Home); BIND(VK_End, End); BIND(VK_PageUp, PageUp); BIND(VK_PageDown, PageDown); BIND(VK_RightShift, RightShift); BIND(VK_Help, Help); BIND(VK_ForwardDelete, Delete); BIND(VK_LeftArrow, Left); BIND(VK_RightArrow, Right); BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up); } #undef BIND Inputs::Keyboard &keyboard = keyboard_machine->get_keyboard(); if(keyboard.observed_keys().find(mapped_key) != keyboard.observed_keys().end()) { // Don't pass anything on if this is not new information. if(_depressedKeys[key] == !!isPressed) return; _depressedKeys[key] = !!isPressed; // Pick an ASCII code, if any. char pressedKey = '\0'; if(characters.length) { unichar firstCharacter = [characters characterAtIndex:0]; if(firstCharacter < 128) { pressedKey = (char)firstCharacter; } } // Decide whether to try to 'type' (in the logical mapping sense) in the first instance. bool shouldTryToType = self.inputMode == CSMachineKeyboardInputModeKeyboardLogical; // Even if the default wasn't to try to type, have a go anyway if the key wasn't // recognised directly. E.g. if the user hits their square bracket key on a machine that // doesn't have a correspondingly-placed key, then try to type a square bracket. if(!shouldTryToType) { @synchronized(self) { shouldTryToType = !keyboard.set_key_pressed(mapped_key, pressedKey, isPressed); } } // If this should try to type, give that a go. But typing may fail, e.g. because the user // has pressed something like the cursor keys, which don't actually map to a typeable symbol. if(shouldTryToType) { @synchronized(self) { if(pressedKey && keyboard_machine->can_type(pressedKey)) { if(isPressed) { char string[2] = { pressedKey, 0 }; keyboard_machine->type_string(string); } return; } } // Okay, so at this point either: set_key_pressed was already tried but will fail anyway, // or else it hasn't been tried yet and is worth a go. @synchronized(self) { shouldTryToType = !keyboard.set_key_pressed(mapped_key, pressedKey, isPressed); } } return; } } auto joystick_machine = _machine->joystick_machine(); if(self.inputMode == CSMachineKeyboardInputModeJoystick && joystick_machine) { @synchronized(self) { auto &joysticks = joystick_machine->get_joysticks(); if(!joysticks.empty()) { // Convert to a C++ bool so that the following calls are resolved correctly even if overloaded. bool is_pressed = !!isPressed; switch(key) { case VK_LeftArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Left, is_pressed); break; case VK_RightArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Right, is_pressed); break; case VK_UpArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Up, is_pressed); break; case VK_DownArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Down, is_pressed); break; case VK_Space: joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); break; case VK_ANSI_A: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 0), is_pressed); break; case VK_ANSI_S: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 1), is_pressed); break; case VK_ANSI_D: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 2), is_pressed); break; case VK_ANSI_F: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 3), is_pressed); break; default: if(characters.length) { joysticks[0]->set_input(Inputs::Joystick::Input([characters characterAtIndex:0]), is_pressed); } else { joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); } break; } } } } } - (void)clearAllKeys { const auto keyboard_machine = _machine->keyboard_machine(); if(keyboard_machine) { @synchronized(self) { keyboard_machine->get_keyboard().reset_all_keys(); } } const auto joystick_machine = _machine->joystick_machine(); if(joystick_machine) { @synchronized(self) { for(auto &joystick : joystick_machine->get_joysticks()) { joystick->reset_all_inputs(); } } } const auto mouse_machine = _machine->mouse_machine(); if(mouse_machine) { @synchronized(self) { mouse_machine->get_mouse().reset_all_buttons(); } } } - (void)setMouseButton:(int)button isPressed:(BOOL)isPressed { auto mouse_machine = _machine->mouse_machine(); if(mouse_machine) { @synchronized(self) { mouse_machine->get_mouse().set_button_pressed(button % mouse_machine->get_mouse().get_number_of_buttons(), isPressed); } } } - (void)addMouseMotionX:(CGFloat)deltaX y:(CGFloat)deltaY { auto mouse_machine = _machine->mouse_machine(); if(mouse_machine) { @synchronized(self) { mouse_machine->get_mouse().move(int(deltaX), int(deltaY)); } } } #pragma mark - Options - (void)setUseFastLoadingHack:(BOOL)useFastLoadingHack { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _useFastLoadingHack = useFastLoadingHack; Configurable::SelectionSet selection_set; append_quick_load_tape_selection(selection_set, useFastLoadingHack ? true : false); configurable_device->set_selections(selection_set); } } - (void)setVideoSignal:(CSMachineVideoSignal)videoSignal { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _videoSignal = videoSignal; Configurable::SelectionSet selection_set; Configurable::Display display; switch(videoSignal) { case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break; case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break; case CSMachineVideoSignalComposite: display = Configurable::Display::CompositeColour; break; case CSMachineVideoSignalMonochromeComposite: display = Configurable::Display::CompositeMonochrome; break; } append_display_selection(selection_set, display); configurable_device->set_selections(selection_set); } } - (bool)supportsVideoSignal:(CSMachineVideoSignal)videoSignal { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return NO; // Get the options this machine provides. std::vector> options; @synchronized(self) { options = configurable_device->get_options(); } // Get the standard option for this video signal. Configurable::StandardOptions option; switch(videoSignal) { case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break; case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break; case CSMachineVideoSignalComposite: option = Configurable::DisplayCompositeColour; break; case CSMachineVideoSignalMonochromeComposite: option = Configurable::DisplayCompositeMonochrome; break; } std::unique_ptr display_option = std::move(standard_options(option).front()); Configurable::ListOption *display_list_option = dynamic_cast(display_option.get()); NSAssert(display_list_option, @"Expected display option to be a list"); // See whether the video signal is included in the machine options. for(auto &candidate: options) { Configurable::ListOption *list_option = dynamic_cast(candidate.get()); // Both should be list options if(!list_option) continue; // Check for same name of option. if(candidate->short_name != display_option->short_name) continue; // Check that the video signal option is included. return std::find(list_option->options.begin(), list_option->options.end(), display_list_option->options.front()) != list_option->options.end(); } return NO; } - (void)setUseAutomaticTapeMotorControl:(BOOL)useAutomaticTapeMotorControl { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _useAutomaticTapeMotorControl = useAutomaticTapeMotorControl; Configurable::SelectionSet selection_set; append_automatic_tape_motor_control_selection(selection_set, useAutomaticTapeMotorControl ? true : false); configurable_device->set_selections(selection_set); } } - (void)setUseQuickBootingHack:(BOOL)useQuickBootingHack { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _useQuickBootingHack = useQuickBootingHack; Configurable::SelectionSet selection_set; append_quick_boot_selection(selection_set, useQuickBootingHack ? true : false); configurable_device->set_selections(selection_set); } } - (NSString *)userDefaultsPrefix { // Assumes that the first machine in the targets list is the source of user defaults. std::string name = Machine::ShortNameForTargetMachine(_analyser.targets.front()->machine); return [[NSString stringWithUTF8String:name.c_str()] lowercaseString]; } - (BOOL)canInsertMedia { return !!_machine->media_target(); } #pragma mark - Special machines - (CSAtari2600 *)atari2600 { return [[CSAtari2600 alloc] initWithAtari2600:_machine->raw_pointer() owner:self]; } - (CSZX8081 *)zx8081 { return [[CSZX8081 alloc] initWithZX8081:_machine->raw_pointer() owner:self]; } #pragma mark - Input device queries - (BOOL)hasJoystick { return !!_machine->joystick_machine(); } - (BOOL)hasMouse { return !!_machine->mouse_machine(); } - (BOOL)hasExclusiveKeyboard { return !!_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive(); } - (BOOL)shouldUsurpCommand { if(!_machine->keyboard_machine()) return NO; const auto essential_modifiers = _machine->keyboard_machine()->get_keyboard().get_essential_modifiers(); return essential_modifiers.find(Inputs::Keyboard::Key::LeftMeta) != essential_modifiers.end() || essential_modifiers.find(Inputs::Keyboard::Key::RightMeta) != essential_modifiers.end(); } #pragma mark - Activity observation - (void)addLED:(NSString *)led { [_leds addObject:led]; } - (NSArray *)leds { return _leds; } #pragma mark - Timer - (void)openGLViewDisplayLinkDidFire:(CSOpenGLView *)view now:(const CVTimeStamp *)now outputTime:(const CVTimeStamp *)outputTime { // First order of business: grab a timestamp. const auto timeNow = Time::nanos_now(); CGSize pixelSize = view.backingSize; BOOL isSyncLocking; @synchronized(self) { // Store a means to map from CVTimeStamp.hostTime to Time::Nanos; // there is an extremely dodgy assumption here that the former is in ns. if(!_timeDiff) { _timeDiff = int64_t(now->hostTime) - int64_t(timeNow); } // Store the next end-of-frame time. TODO: and start of next and implied visible duration, if raster racing? _syncTime = int64_t(now->hostTime) + _timeDiff; // Also crib the current view pixel size. _pixelSize = pixelSize; // Set the current refresh period. _refreshPeriod = double(now->videoRefreshPeriod) / double(now->videoTimeScale); // Determine where responsibility lies for drawing. isSyncLocking = _isSyncLocking; } // Draw the current output. (TODO: do this within the timer if either raster racing or, at least, sync matching). if(!isSyncLocking) { [self.view performWithGLContext:^{ self->_scanTarget->draw((int)pixelSize.width, (int)pixelSize.height); } flushDrawable:YES]; } } #define TICKS 600 - (void)start { __block auto lastTime = Time::nanos_now(); _timer = [[CSHighPrecisionTimer alloc] initWithTask:^{ // Grab the time now and, therefore, the amount of time since the timer last fired // (capped at half a second). const auto timeNow = Time::nanos_now(); const auto duration = std::min(timeNow - lastTime, Time::Nanos(10'000'000'000 / TICKS)); CGSize pixelSize; BOOL splitAndSync = NO; @synchronized(self) { // If this tick includes vsync then inspect the machine. if(timeNow >= self->_syncTime && lastTime < self->_syncTime) { splitAndSync = self->_isSyncLocking = self->_scanSynchroniser.can_synchronise(self->_machine->crt_machine()->get_scan_status(), self->_refreshPeriod); // If the time window is being split, run up to the split, then check out machine speed, possibly // adjusting multiplier, then run after the split. if(splitAndSync) { self->_machine->crt_machine()->run_for((double)(self->_syncTime - lastTime) / 1e9); self->_machine->crt_machine()->set_speed_multiplier( self->_scanSynchroniser.next_speed_multiplier(self->_machine->crt_machine()->get_scan_status()) ); self->_machine->crt_machine()->run_for((double)(timeNow - self->_syncTime) / 1e9); } } // If the time window is being split, run up to the split, then check out machine speed, possibly // adjusting multiplier, then run after the split. if(!splitAndSync) { self->_machine->crt_machine()->run_for((double)duration / 1e9); } pixelSize = self->_pixelSize; } // If this was not a split-and-sync then dispatch the update request asynchronously, unless // there is an earlier one not yet finished, in which case don't worry about it for now. // // If it was a split-and-sync then spin until it is safe to dispatch, and dispatch with // a concluding draw. Implicit assumption here: whatever is left to be done in the final window // can be done within the retrace period. auto wasUpdating = self->_isUpdating.test_and_set(); if(wasUpdating && splitAndSync) { while(self->_isUpdating.test_and_set()); wasUpdating = false; } if(!wasUpdating) { dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INTERACTIVE, 0), ^{ [self.view performWithGLContext:^{ self->_scanTarget->update((int)pixelSize.width, (int)pixelSize.height); if(splitAndSync) { self->_scanTarget->draw((int)pixelSize.width, (int)pixelSize.height); } } flushDrawable:splitAndSync]; self->_isUpdating.clear(); }); } lastTime = timeNow; } interval:uint64_t(1000000000) / uint64_t(TICKS)]; } #undef TICKS - (void)stop { [_timer invalidate]; _timer = nil; } @end