// // Atari2600.cpp // CLK // // Created by Thomas Harte on 14/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "Atari2600.hpp" #include #include using namespace Atari2600; namespace { static const unsigned int horizontalTimerPeriod = 228; } Machine::Machine() : _horizontalTimer(0), _lastOutputStateDuration(0), _lastOutputState(OutputState::Sync), _piaTimerStatus(0xff), _rom(nullptr), _piaDataValue{0xff, 0xff}, _tiaInputValue{0xff, 0xff}, _upcomingEventsPointer(0) { memset(_collisions, 0xff, sizeof(_collisions)); set_reset_line(true); } void Machine::setup_output(float aspect_ratio) { _crt = new Outputs::CRT::CRT(228, 1, 263, Outputs::CRT::ColourSpace::YIQ, 228, 1, 1); // this is the NTSC phase offset function; see below for PAL _crt->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "float phaseOffset = 6.283185308 * float(iPhase - 1u) / 13.0;" "return (float(y) / 14.0) * (1.0 - amplitude) + step(1, iPhase) * amplitude * cos(phase + phaseOffset);" "}"); _crt->set_output_device(Outputs::CRT::Television); } void Machine::switch_region() { // the PAL function _crt->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "uint direction = iPhase & 1u;" "float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);" "phaseOffset *= 6.283185308 / 12.0;" "return (float(y) / 14.0) * (1.0 - amplitude) + step(4, (iPhase + 2u) & 15u) * amplitude * cos(phase + phaseOffset);" "}"); _crt->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1); } void Machine::close_output() { delete _crt; _crt = nullptr; } Machine::~Machine() { delete[] _rom; close_output(); } void Machine::update_timers(int mask) { // if(_vBlankExtend) printf("."); // unsigned int upcomingEventsPointerPlus1 = (_upcomingEventsPointer + 1)%number_of_upcoming_events; unsigned int upcomingEventsPointerPlus2 = (_upcomingEventsPointer + 4)%number_of_upcoming_events; unsigned int upcomingEventsPointerPlus3 = (_upcomingEventsPointer + 5)%number_of_upcoming_events; unsigned int upcomingEventsPointerPlus4 = (_upcomingEventsPointer + 6)%number_of_upcoming_events; // unsigned int upcomingEventsPointerPlus5 = (_upcomingEventsPointer + 5)%number_of_upcoming_events; // unsigned int upcomingEventsPointerPlus6 = (_upcomingEventsPointer + 6)%number_of_upcoming_events; // unsigned int upcomingEventsPointerPlus7 = (_upcomingEventsPointer + 7)%number_of_upcoming_events; // unsigned int upcomingEventsPointerPlus8 = (_upcomingEventsPointer + 8)%number_of_upcoming_events; // grab the background now, for display in four clocks if(mask & (1 << 5)) { if(!(_horizontalTimer&3)) { unsigned int offset = 4 + _horizontalTimer - (horizontalTimerPeriod - 160); _upcomingEvents[upcomingEventsPointerPlus2].updates |= Event::Action::Playfield; _upcomingEvents[upcomingEventsPointerPlus2].playfieldOutput = _playfield[(offset >> 2)%40]; } } // the ball becomes visible whenever it hits zero, regardless of whether its status // is the result of a counter rollover or a programmatic reset if(mask & (1 << 4)) { if(!_objectCounter[4]) { _upcomingEvents[upcomingEventsPointerPlus2].updates |= Event::Action::ResetPixelCounter; _upcomingEvents[upcomingEventsPointerPlus2].pixelCounterMask |= (1 << 4); } _objectCounter[4] = (_objectCounter[4] + 1)%160; _pixelCounter[4] ++; } // check for player and missle triggers for(int c = 0; c < 4; c++) { if(mask & (1 << c)) { // the players and missles become visible only upon overflow to zero, so schedule for // 5/6 clocks ahead from 159 if(_objectCounter[c] == 159) { unsigned int actionSlot = (c < 2) ? upcomingEventsPointerPlus4 : upcomingEventsPointerPlus3; // unsigned int actionSlot = (c < 2) ? upcomingEventsPointerPlus6 : upcomingEventsPointerPlus5; _upcomingEvents[actionSlot].updates |= Event::Action::ResetPixelCounter; _upcomingEvents[actionSlot].pixelCounterMask |= (1 << c); } else { // otherwise visibility is determined by an appropriate repeat mask and hitting any of 12, 28 or 60, // in which case the counter reset (and hence the start of drawing) will occur in 4/5 cycles uint8_t repeatMask = _playerAndMissileSize[c&1] & 7; if( ( _objectCounter[c] == 16 && ((repeatMask == 1) || (repeatMask == 3)) ) || ( _objectCounter[c] == 32 && ((repeatMask == 2) || (repeatMask == 3) || (repeatMask == 6)) ) || ( _objectCounter[c] == 64 && ((repeatMask == 4) || (repeatMask == 6)) ) ) { unsigned int actionSlot = (c < 2) ? upcomingEventsPointerPlus3 : upcomingEventsPointerPlus2; // unsigned int actionSlot = (c < 2) ? upcomingEventsPointerPlus5 : upcomingEventsPointerPlus4; _upcomingEvents[actionSlot].updates |= Event::Action::ResetPixelCounter; _upcomingEvents[actionSlot].pixelCounterMask |= (1 << c); } } } } for(int c = 0; c < 2; c++) { if(mask & (1 << c)) { uint8_t repeatMask = _playerAndMissileSize[c] & 7; switch(repeatMask) { default: _pixelCounter[c] += 4; break; case 5: _pixelCounter[c] += 2; break; case 7: _pixelCounter[c] += 1; break; } _objectCounter[c] = (_objectCounter[c] + 1)%160; } if(mask & (1 << (c + 2))) { _objectCounter[c+2] = (_objectCounter[c+2] + 1)%160; _pixelCounter[c+2] ++; } } } uint8_t Machine::get_output_pixel() { unsigned int offset = _horizontalTimer - (horizontalTimerPeriod - 160); // get the playfield pixel and hence a proposed colour uint8_t playfieldColour = ((_playfieldControl&6) == 2) ? _playerColour[offset / 80] : _playfieldColour; // get the ball proposed state uint8_t ballPixel = 0; if(_ballGraphicsEnable[_ballGraphicsSelector]&2) { int ballSize = 1 << ((_playfieldControl >> 4)&3); ballPixel = (_pixelCounter[4] < ballSize) ? 1 : 0; } // deal with the sprites uint8_t playerPixels[2] = {0, 0}, missilePixels[2] = {0, 0}; for(int c = 0; c < 2; c++) { if(_playerGraphics[c]) { // figure out player colour int flipMask = (_playerReflection[c]&0x8) ? 0 : 7; if(_pixelCounter[c] < 32) playerPixels[c] = (_playerGraphics[_playerGraphicsSelector[c]][c] >> ((_pixelCounter[c] >> 2) ^ flipMask)) &1; } if((_missileGraphicsEnable[c]&2) && !(_missileGraphicsReset[c]&2)) { int missileSize = 1 << ((_playerAndMissileSize[c] >> 4)&3); missilePixels[c] = (_pixelCounter[c+2] < missileSize) ? 1 : 0; } } // accumulate collisions if(playerPixels[0] | playerPixels[1]) { _collisions[0] |= ((missilePixels[0] & playerPixels[1]) << 7) | ((missilePixels[0] & playerPixels[0]) << 6); _collisions[1] |= ((missilePixels[1] & playerPixels[0]) << 7) | ((missilePixels[1] & playerPixels[1]) << 6); _collisions[2] |= ((_playfieldOutput & playerPixels[0]) << 7) | ((ballPixel & playerPixels[0]) << 6); _collisions[3] |= ((_playfieldOutput & playerPixels[1]) << 7) | ((ballPixel & playerPixels[1]) << 6); _collisions[7] |= ((playerPixels[0] & playerPixels[1]) << 7); } if(_playfieldOutput | ballPixel) { _collisions[4] |= ((_playfieldOutput & missilePixels[0]) << 7) | ((ballPixel & missilePixels[0]) << 6); _collisions[5] |= ((_playfieldOutput & missilePixels[1]) << 7) | ((ballPixel & missilePixels[1]) << 6); _collisions[6] |= ((_playfieldOutput & ballPixel) << 7); } if(missilePixels[0] & missilePixels[1]) _collisions[7] |= (1 << 6); // apply appropriate priority to pick a colour uint8_t playfieldPixel = _playfieldOutput | ballPixel; uint8_t outputColour = playfieldPixel ? playfieldColour : _backgroundColour; if(!(_playfieldControl&0x04) || !playfieldPixel) { if(playerPixels[1] || missilePixels[1]) outputColour = _playerColour[1]; if(playerPixels[0] || missilePixels[0]) outputColour = _playerColour[0]; } // return colour return outputColour; } // in imputing the knowledge that all we're dealing with is the rollover from 159 to 0, // this is faster than the straightforward +1)%160 per profiling //#define increment_object_counter(c) _objectCounter[c] = (_objectCounter[c]+1)&~((158-_objectCounter[c]) >> 8) void Machine::output_pixels(unsigned int count) { while(count--) { OutputState state; // determine which output state will be active in four cycles from now switch(_horizontalTimer >> 2) { case 56: case 0: case 1: case 2: state = OutputState::Blank; break; case 3: case 4: case 5: case 6: state = OutputState::Sync; break; case 7: case 8: case 9: case 10: state = OutputState::ColourBurst; break; case 11: case 12: case 13: case 14: case 15: state = OutputState::Blank; break; case 16: case 17: state = _vBlankExtend ? OutputState::Blank : OutputState::Pixel; break; default: state = OutputState::Pixel; break; } // if(!(_horizontalTimer&3) && _vBlankExtend) // { // printf("%c", 'a' + state); // } // grab background colour and schedule pixel counter resets if(state == OutputState::Pixel) update_timers(~0); // if vsync is enabled, output the opposite of the automatic hsync output if(_vSyncEnabled) { state = (state = OutputState::Sync) ? OutputState::Blank : OutputState::Sync; } // write that state as the one that will become effective in four clocks _upcomingEvents[(_upcomingEventsPointer+4)%number_of_upcoming_events].state = state; // apply any queued changes and flush the record if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::Playfield) _playfieldOutput = _upcomingEvents[_upcomingEventsPointer].playfieldOutput; if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::ResetPixelCounter) { for(int c = 0; c < 5; c++) { if(_upcomingEvents[_upcomingEventsPointer].pixelCounterMask & (1 << c)) _pixelCounter[c] = 0; } _upcomingEvents[_upcomingEventsPointer].pixelCounterMask = 0; } if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::HMoveCompare) { for(int c = 0; c < 5; c++) { if(((_objectMotion[c] >> 4)^_hMoveCounter) == 7) { _hMoveFlags &= ~(1 << c); } } if(_hMoveFlags) { if(_hMoveCounter) _hMoveCounter--; _upcomingEvents[(_upcomingEventsPointer+4)%number_of_upcoming_events].updates |= Event::Action::HMoveCompare; _upcomingEvents[(_upcomingEventsPointer+2)%number_of_upcoming_events].updates |= Event::Action::HMoveDecrement; } // else // { // _vBlankExtend = false; // } } if(_upcomingEvents[_upcomingEventsPointer].updates & Event::Action::HMoveDecrement) { update_timers(_hMoveFlags); // for(int c = 0; c < 5; c++) // { // printf("%c", _hMoveFlags & (1 << c) ? 'X' : '-'); // } // printf(" "); } _upcomingEvents[_upcomingEventsPointer].updates = 0; // read that state state = _upcomingEvents[_upcomingEventsPointer].state; OutputState actingState = state; // honour the vertical blank flag if(_vBlankEnabled && state == OutputState::Pixel) { actingState = OutputState::Blank; } // decide what that means needs to be communicated to the CRT _lastOutputStateDuration++; if(actingState != _lastOutputState) { switch(_lastOutputState) { case OutputState::Blank: _crt->output_blank(_lastOutputStateDuration); break; case OutputState::Sync: _crt->output_sync(_lastOutputStateDuration); break; case OutputState::ColourBurst: _crt->output_colour_burst(_lastOutputStateDuration, 96, 0); break; case OutputState::Pixel: _crt->output_data(_lastOutputStateDuration, 1); break; } _lastOutputStateDuration = 0; _lastOutputState = actingState; if(actingState == OutputState::Pixel) { _outputBuffer = _crt->allocate_write_area(160); } else { _outputBuffer = nullptr; } } // decide on a pixel colour if that's what's happening if(state == OutputState::Pixel) { uint8_t colour = get_output_pixel(); if(_outputBuffer) { *_outputBuffer = colour; _outputBuffer++; } } // advance _upcomingEventsPointer = (_upcomingEventsPointer + 1)%number_of_upcoming_events; // advance horizontal timer, perform reset actions if requested _horizontalTimer = (_horizontalTimer + 1) % horizontalTimerPeriod; if(!_horizontalTimer) { _vBlankExtend = false; set_ready_line(false); } } } unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { set_reset_line(false); uint8_t returnValue = 0xff; unsigned int cycles_run_for = 1; // this occurs as a feedback loop — the 2600 requests ready, then performs the cycles_run_for // leap to the end of ready only once ready is signalled — because on a 6502 ready doesn't take // effect until the next read; therefore it isn't safe to assume that signalling ready immediately // skips to the end of the line. if(operation == CPU6502::BusOperation::Ready) { unsigned int distance_to_end_of_ready = horizontalTimerPeriod - _horizontalTimer; cycles_run_for = distance_to_end_of_ready / 3; } output_pixels(cycles_run_for * 3); // printf("/%d/", _horizontalTimer); if(operation != CPU6502::BusOperation::Ready) { // check for a paging access if(_rom_size > 4096 && ((address & 0x1f00) == 0x1f00)) { uint8_t *base_ptr = _romPages[0]; uint8_t first_paging_register = (uint8_t)(0xf8 - (_rom_size >> 14)*2); const uint8_t paging_register = address&0xff; if(paging_register >= first_paging_register) { const uint16_t selected_page = paging_register - first_paging_register; if(selected_page * 4096 < _rom_size) { base_ptr = &_rom[selected_page * 4096]; } } if(base_ptr != _romPages[0]) { _romPages[0] = base_ptr; _romPages[1] = base_ptr + 1024; _romPages[2] = base_ptr + 2048; _romPages[3] = base_ptr + 3072; } } // check for a ROM read if((address&0x1000) && isReadOperation(operation)) { returnValue &= _romPages[(address >> 10)&3][address&1023]; } // check for a RAM access if((address&0x1280) == 0x80) { if(isReadOperation(operation)) { returnValue &= _ram[address&0x7f]; } else { _ram[address&0x7f] = *value; } } // check for a TIA access if(!(address&0x1080)) { if(isReadOperation(operation)) { const uint16_t decodedAddress = address & 0xf; switch(decodedAddress) { case 0x00: // missile 0 / player collisions case 0x01: // missile 1 / player collisions case 0x02: // player 0 / playfield / ball collisions case 0x03: // player 1 / playfield / ball collisions case 0x04: // missile 0 / playfield / ball collisions case 0x05: // missile 1 / playfield / ball collisions case 0x06: // ball / playfield collisions case 0x07: // player / player, missile / missile collisions returnValue &= _collisions[decodedAddress]; break; case 0x08: case 0x09: case 0x0a: case 0x0b: // TODO: pot ports break; case 0x0c: case 0x0d: returnValue &= _tiaInputValue[decodedAddress - 0x0c]; break; } } else { const uint16_t decodedAddress = address & 0x3f; switch(decodedAddress) { case 0x00: _vSyncEnabled = !!(*value & 0x02); break; case 0x01: _vBlankEnabled = !!(*value & 0x02); break; case 0x02: // printf("%d\n", _horizontalTimer); // printf("W"); if(_horizontalTimer) set_ready_line(true); break; case 0x03: _horizontalTimer = 0; // TODO: this should be delayed by four cycles, affecting phase; // need to fix wait logic. break; case 0x04: case 0x05: _playerAndMissileSize[decodedAddress - 0x04] = *value; break; case 0x06: case 0x07: _playerColour[decodedAddress - 0x06] = *value; break; case 0x08: _playfieldColour = *value; break; case 0x09: _backgroundColour = *value; break; case 0x0a: { uint8_t old_playfield_control = _playfieldControl; _playfieldControl = *value; // did the mirroring bit change? if((_playfieldControl^old_playfield_control)&1) { if(_playfieldControl&1) { for(int c = 0; c < 20; c++) _playfield[c+20] = _playfield[19-c]; } else { memcpy(&_playfield[20], _playfield, 20); } } } break; case 0x0b: case 0x0c: _playerReflection[decodedAddress - 0x0b] = *value; break; case 0x0d: _playfield[0] = ((*value) >> 4)&1; _playfield[1] = ((*value) >> 5)&1; _playfield[2] = ((*value) >> 6)&1; _playfield[3] = (*value) >> 7; if(_playfieldControl&1) { for(int c = 0; c < 4; c++) _playfield[39-c] = _playfield[c]; } else { memcpy(&_playfield[20], _playfield, 4); } break; case 0x0e: _playfield[4] = (*value) >> 7; _playfield[5] = ((*value) >> 6)&1; _playfield[6] = ((*value) >> 5)&1; _playfield[7] = ((*value) >> 4)&1; _playfield[8] = ((*value) >> 3)&1; _playfield[9] = ((*value) >> 2)&1; _playfield[10] = ((*value) >> 1)&1; _playfield[11] = (*value)&1; if(_playfieldControl&1) { for(int c = 0; c < 8; c++) _playfield[35-c] = _playfield[c+4]; } else { memcpy(&_playfield[24], &_playfield[4], 8); } break; case 0x0f: _playfield[19] = (*value) >> 7; _playfield[18] = ((*value) >> 6)&1; _playfield[17] = ((*value) >> 5)&1; _playfield[16] = ((*value) >> 4)&1; _playfield[15] = ((*value) >> 3)&1; _playfield[14] = ((*value) >> 2)&1; _playfield[13] = ((*value) >> 1)&1; _playfield[12] = (*value)&1; if(_playfieldControl&1) { for(int c = 0; c < 8; c++) _playfield[27-c] = _playfield[c+12]; } else { memcpy(&_playfield[32], &_playfield[12], 8); } break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: _objectCounter[decodedAddress - 0x10] = 0; break; case 0x1c: _ballGraphicsEnable[1] = _ballGraphicsEnable[0]; case 0x1b: { int index = decodedAddress - 0x1b; _playerGraphics[0][index] = *value; _playerGraphics[1][index^1] = _playerGraphics[0][index^1]; } break; case 0x1d: _missileGraphicsEnable[0] = *value; break; case 0x1e: _missileGraphicsEnable[1] = *value; break; case 0x1f: _ballGraphicsEnable[0] = *value; break; case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: _objectMotion[decodedAddress - 0x20] = *value; break; case 0x25: _playerGraphicsSelector[0] = (*value)&1; break; case 0x26: _playerGraphicsSelector[1] = (*value)&1; break; case 0x27: _ballGraphicsSelector = (*value)&1; break; case 0x28: case 0x29: if(!(*value&0x02) && _missileGraphicsReset[decodedAddress - 0x28]&0x02) _objectCounter[decodedAddress - 0x26] = _objectCounter[decodedAddress - 0x28]; // TODO: +3 for normal, +6 for double, +10 for quad _missileGraphicsReset[decodedAddress - 0x28] = *value; break; case 0x2a: _vBlankExtend = true; // clear any ongoing moves if(_hMoveFlags) { for(int c = 0; c < number_of_upcoming_events; c++) { _upcomingEvents[c].updates &= ~(Event::Action::HMoveCompare | Event::Action::HMoveDecrement); } } // schedule new moves _hMoveFlags = 0x1f; _hMoveCounter = 15; // static int lc = 0; // lc++; // if(lc == 2813) // printf("{%d}", lc); // printf("/%d/", _horizontalTimer); // printf("%d [", _horizontalTimer); // for(int c = 0; c < 5; c++) // { // printf("%d ", _objectMotion[c] >> 4); // } // printf("]"); // printf("["); // for(int c = 0; c < 5; c++) // { // printf("%d ", _objectCounter[c]); // } // printf("]\n"); // for(int c = 0; c < 5; c++) // { // if(_objectMotion[c] >> 4) // printf("!"); // } // justification for +5: "we need to wait at least 71 [clocks] before the HMOVE operation is complete"; // which will take 16*4 + 2 = 66 cycles from the first compare, implying the first compare must be // in five cycles from now _upcomingEvents[(_upcomingEventsPointer + 5)%number_of_upcoming_events].updates |= Event::Action::HMoveCompare; break; case 0x2b: _objectMotion[0] = _objectMotion[1] = _objectMotion[2] = _objectMotion[3] = _objectMotion[4] = 0; break; case 0x2c: _collisions[0] = _collisions[1] = _collisions[2] = _collisions[3] = _collisions[4] = _collisions[5] = 0x3f; _collisions[6] = 0x7f; _collisions[7] = 0x3f; break; } } } // check for a PIA access if((address&0x1280) == 0x280) { if(isReadOperation(operation)) { const uint8_t decodedAddress = address & 0xf; switch(address & 0xf) { case 0x00: case 0x02: returnValue &= _piaDataValue[decodedAddress / 2]; break; case 0x01: case 0x03: // TODO: port DDR printf("!!!DDR!!!"); break; case 0x04: returnValue &= _piaTimerValue >> _piaTimerShift; if(_writtenPiaTimerShift != _piaTimerShift) { _piaTimerShift = _writtenPiaTimerShift; _piaTimerValue <<= _writtenPiaTimerShift; } break; case 0x05: returnValue &= _piaTimerStatus; _piaTimerStatus &= ~0x40; break; } } else { const uint8_t decodedAddress = address & 0x0f; switch(decodedAddress) { case 0x04: case 0x05: case 0x06: case 0x07: _writtenPiaTimerShift = _piaTimerShift = (decodedAddress - 0x04) * 3 + (decodedAddress / 0x07); _piaTimerValue = (unsigned int)(*value << _piaTimerShift); _piaTimerStatus &= ~0xc0; break; } } } if(isReadOperation(operation)) { *value = returnValue; } } if(_piaTimerValue >= cycles_run_for) { _piaTimerValue -= cycles_run_for; } else { _piaTimerValue += 0xff - cycles_run_for; _piaTimerShift = 0; _piaTimerStatus |= 0xc0; } // output_pixels(cycles_run_for * 3); return cycles_run_for; } void Machine::set_digital_input(Atari2600DigitalInput input, bool state) { switch (input) { case Atari2600DigitalInputJoy1Up: if(state) _piaDataValue[0] &= ~0x10; else _piaDataValue[0] |= 0x10; break; case Atari2600DigitalInputJoy1Down: if(state) _piaDataValue[0] &= ~0x20; else _piaDataValue[0] |= 0x20; break; case Atari2600DigitalInputJoy1Left: if(state) _piaDataValue[0] &= ~0x40; else _piaDataValue[0] |= 0x40; break; case Atari2600DigitalInputJoy1Right: if(state) _piaDataValue[0] &= ~0x80; else _piaDataValue[0] |= 0x80; break; case Atari2600DigitalInputJoy2Up: if(state) _piaDataValue[0] &= ~0x01; else _piaDataValue[0] |= 0x01; break; case Atari2600DigitalInputJoy2Down: if(state) _piaDataValue[0] &= ~0x02; else _piaDataValue[0] |= 0x02; break; case Atari2600DigitalInputJoy2Left: if(state) _piaDataValue[0] &= ~0x04; else _piaDataValue[0] |= 0x04; break; case Atari2600DigitalInputJoy2Right: if(state) _piaDataValue[0] &= ~0x08; else _piaDataValue[0] |= 0x08; break; // TODO: latching case Atari2600DigitalInputJoy1Fire: if(state) _tiaInputValue[0] &= ~0x80; else _tiaInputValue[0] |= 0x80; break; case Atari2600DigitalInputJoy2Fire: if(state) _tiaInputValue[1] &= ~0x80; else _tiaInputValue[1] |= 0x80; break; default: break; } } void Machine::set_rom(size_t length, const uint8_t *data) { _rom_size = 1024; while(_rom_size < length && _rom_size < 32768) _rom_size <<= 1; delete[] _rom; _rom = new uint8_t[_rom_size]; size_t offset = 0; const size_t copy_step = std::min(_rom_size, length); while(offset < _rom_size) { size_t copy_length = std::min(copy_step, _rom_size - offset); memcpy(&_rom[offset], data, copy_length); offset += copy_length; } size_t romMask = _rom_size - 1; _romPages[0] = _rom; _romPages[1] = &_rom[1024 & romMask]; _romPages[2] = &_rom[2048 & romMask]; _romPages[3] = &_rom[3072 & romMask]; }