// // i8272.cpp // Clock Signal // // Created by Thomas Harte on 05/08/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "i8272.hpp" #include "../../Storage/Disk/Encodings/MFM.hpp" #include using namespace Intel; #define SetDataRequest() (main_status_ |= 0x80) #define ResetDataRequest() (main_status_ &= ~0x80) #define DataRequest() (main_status_ & 0x80) #define SetDataDirectionToProcessor() (main_status_ |= 0x40) #define SetDataDirectionFromProcessor() (main_status_ &= ~0x40) #define DataDirectionToProcessor() (main_status_ & 0x40) #define SetNonDMAExecution() (main_status_ |= 0x20) #define ResetNonDMAExecution() (main_status_ &= ~0x20) #define SetBusy() (main_status_ |= 0x10) #define ResetBusy() (main_status_ &= ~0x10) #define Busy() (main_status_ & 0x10) #define SetAbnormalTermination() (status_[0] |= 0x40) #define SetInvalidCommand() (status_[0] |= 0x80) #define SetReadyChanged() (status_[0] |= 0xc0) #define SetSeekEnd() (status_[0] |= 0x20) #define SetEquipmentCheck() (status_[0] |= 0x10) #define SetNotReady() (status_[0] |= 0x08) #define SetEndOfCylinder() (status_[1] |= 0x80) #define SetDataError() (status_[1] |= 0x20) #define SetOverrun() (status_[1] |= 0x10) #define SetNoData() (status_[1] |= 0x04) #define SetNotWriteable() (status_[1] |= 0x02) #define SetMissingAddressMark() (status_[1] |= 0x01) #define SetControlMark() (status_[2] |= 0x40) #define ControlMark() (status_[2] & 0x40) #define SetDataFieldDataError() (status_[2] |= 0x20) #define SetWrongCyinder() (status_[2] |= 0x10) #define SetScanEqualHit() (status_[2] |= 0x08) #define SetScanNotSatisfied() (status_[2] |= 0x04) #define SetBadCylinder() (status_[2] |= 0x02) #define SetMissingDataAddressMark() (status_[2] |= 0x01) i8272::i8272(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) : Storage::Disk::MFMController(clock_rate, clock_rate_multiplier, revolutions_per_minute), main_status_(0), interesting_event_mask_((int)Event8272::CommandByte), resume_point_(0), delay_time_(0), head_timers_running_(0), expects_input_(false) { posit_event((int)Event8272::CommandByte); } void i8272::run_for(Cycles cycles) { Storage::Disk::MFMController::run_for(cycles); // check for an expired timer if(delay_time_ > 0) { if(cycles.as_int() >= delay_time_) { delay_time_ = 0; posit_event((int)Event8272::Timer); } else { delay_time_ -= cycles.as_int(); } } // update seek status of any drives presently seeking if(main_status_ & 0xf) { for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::Seeking) { drives_[c].step_rate_counter += cycles.as_int(); int steps = drives_[c].step_rate_counter / (8000 * step_rate_time_); drives_[c].step_rate_counter %= (8000 * step_rate_time_); while(steps--) { // Perform a step. int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1; drives_[c].drive->step(direction); drives_[c].head_position += direction; // Check for completion. if(drives_[c].seek_is_satisfied()) { drives_[c].phase = Drive::CompletedSeeking; if(drives_[c].target_head_position == -1) drives_[c].head_position = 0; break; } } } } } // check for any head unloads if(head_timers_running_) { for(int c = 0; c < 4; c++) { for(int h = 0; h < 2; h++) { if(drives_[c].head_unload_delay[c] > 0) { if(cycles.as_int() >= drives_[c].head_unload_delay[c]) { drives_[c].head_unload_delay[c] = 0; drives_[c].head_is_loaded[c] = false; head_timers_running_--; if(!head_timers_running_) return; } else { drives_[c].head_unload_delay[c] -= cycles.as_int(); } } } } } } void i8272::set_register(int address, uint8_t value) { // don't consider attempted sets to the status register if(!address) return; // if not ready for commands, do nothing if(!DataRequest() || DataDirectionToProcessor()) return; if(expects_input_) { input_ = value; has_input_ = true; ResetDataRequest(); } else { // accumulate latest byte in the command byte sequence command_.push_back(value); posit_event((int)Event8272::CommandByte); } } uint8_t i8272::get_register(int address) { if(address) { if(result_stack_.empty()) return 0xff; uint8_t result = result_stack_.back(); result_stack_.pop_back(); if(result_stack_.empty()) posit_event((int)Event8272::ResultEmpty); return result; } else { return main_status_; } } void i8272::set_disk(std::shared_ptr disk, int drive) { if(drive < 4 && drive >= 0) { drives_[drive].drive->set_disk(disk); } } #define BEGIN_SECTION() switch(resume_point_) { default: #define END_SECTION() } #define MS_TO_CYCLES(x) x * 8000 #define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = (int)mask; return; case __LINE__: #define WAIT_FOR_TIME(ms) resume_point_ = __LINE__; interesting_event_mask_ = (int)Event8272::Timer; delay_time_ = MS_TO_CYCLES(ms); case __LINE__: if(delay_time_) return; #define PASTE(x, y) x##y #define CONCAT(x, y) PASTE(x, y) #define FIND_HEADER() \ CONCAT(find_header, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \ if(event_type == (int)Event::IndexHole) index_hole_limit_--; \ else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \ \ if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \ CONCAT(header_found, __LINE__): 0;\ #define FIND_DATA() \ CONCAT(find_data, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \ if(event_type == (int)Event::Token && get_latest_token().type != Token::Data && get_latest_token().type != Token::DeletedData) goto CONCAT(find_data, __LINE__); #define READ_HEADER() \ distance_into_section_ = 0; \ set_data_mode(Reading); \ CONCAT(read_header, __LINE__): WAIT_FOR_EVENT(Event::Token); \ header_[distance_into_section_] = get_latest_token().byte_value; \ distance_into_section_++; \ if(distance_into_section_ < 6) goto CONCAT(read_header, __LINE__); \ set_data_mode(Scanning); #define CLEAR_STATUS() \ status_[0] = status_[1] = status_[2] = 0; #define SET_DRIVE_HEAD_MFM() \ active_drive_ = command_[1]&3; \ active_head_ = (command_[1] >> 2)&1; \ set_drive(drives_[active_drive_].drive); \ drives_[active_drive_].drive->set_head((unsigned int)active_head_); \ set_is_double_density(command_[0] & 0x40); \ invalidate_track(); #define LOAD_HEAD() \ if(!drives_[active_drive_].head_is_loaded[active_head_]) { \ drives_[active_drive_].head_is_loaded[active_head_] = true; \ WAIT_FOR_TIME(head_load_time_); \ } else { \ if(drives_[active_drive_].head_unload_delay[active_head_] > 0) { \ drives_[active_drive_].head_unload_delay[active_head_] = 0; \ head_timers_running_--; \ } \ } #define SCHEDULE_HEAD_UNLOAD() \ if(drives_[active_drive_].head_is_loaded[active_head_]) {\ if(drives_[active_drive_].head_unload_delay[active_head_] == 0) { \ head_timers_running_++; \ } \ drives_[active_drive_].head_unload_delay[active_head_] = MS_TO_CYCLES(head_unload_time_);\ } void i8272::posit_event(int event_type) { if(!(interesting_event_mask_ & event_type)) return; interesting_event_mask_ &= ~event_type; BEGIN_SECTION(); // Resets busy and non-DMA execution, clears the command buffer, sets the data mode to scanning and flows // into wait_for_complete_command_sequence. wait_for_command: expects_input_ = false; set_data_mode(Storage::Disk::MFMController::DataMode::Scanning); ResetBusy(); ResetNonDMAExecution(); command_.clear(); // Sets the data request bit, and waits for a byte. Then sets the busy bit. Continues accepting bytes // until it has a quantity that make up an entire command, then resets the data request bit and // branches to that command. wait_for_complete_command_sequence: SetDataRequest(); SetDataDirectionFromProcessor(); WAIT_FOR_EVENT(Event8272::CommandByte) SetBusy(); switch(command_[0] & 0x1f) { case 0x06: // read data case 0x0b: // read deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto read_data; case 0x05: // write data case 0x09: // write deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto write_data; case 0x02: // read track if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto read_track; case 0x0a: // read ID if(command_.size() < 2) goto wait_for_complete_command_sequence; ResetDataRequest(); goto read_id; case 0x0d: // format track if(command_.size() < 6) goto wait_for_complete_command_sequence; ResetDataRequest(); goto format_track; case 0x11: // scan low if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto scan_low; case 0x19: // scan low or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto scan_low_or_equal; case 0x1d: // scan high or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; ResetDataRequest(); goto scan_high_or_equal; case 0x07: // recalibrate if(command_.size() < 2) goto wait_for_complete_command_sequence; ResetDataRequest(); goto recalibrate; case 0x08: // sense interrupt status ResetDataRequest(); goto sense_interrupt_status; case 0x03: // specify if(command_.size() < 3) goto wait_for_complete_command_sequence; ResetDataRequest(); goto specify; case 0x04: // sense drive status if(command_.size() < 2) goto wait_for_complete_command_sequence; ResetDataRequest(); goto sense_drive_status; case 0x0f: // seek if(command_.size() < 3) goto wait_for_complete_command_sequence; ResetDataRequest(); goto seek; default: // invalid ResetDataRequest(); goto invalid; } // Decodes drive, head and density, loads the head, loads the internal cylinder, head, sector and size registers, // and searches for a sector that meets those criteria. If one is found, inspects the instruction in use and // jumps to an appropriate handler. read_write_find_header: // Establishes the drive and head being addressed, and whether in double density mode; populates the internal // cylinder, head, sector and size registers from the command stream. if(!dma_mode_) SetNonDMAExecution(); SET_DRIVE_HEAD_MFM(); LOAD_HEAD(); CLEAR_STATUS(); cylinder_ = command_[2]; head_ = command_[3]; sector_ = command_[4]; size_ = command_[5]; // Sets a maximum index hole limit of 2 then performs a find header/read header loop, continuing either until // the index hole limit is breached or a sector is found with a cylinder, head, sector and size equal to the // values in the internal registers. index_hole_limit_ = 2; find_next_sector: FIND_HEADER(); if(!index_hole_limit_) { // Two index holes have passed wihout finding the header sought. SetNoData(); goto abort_read_write; } READ_HEADER(); if(get_crc_generator().get_value()) { // This implies a CRC error in the header; mark as such but continue. SetDataError(); } if(header_[0] != cylinder_ || header_[1] != head_ || header_[2] != sector_ || header_[3] != size_) goto find_next_sector; // Branch to whatever is supposed to happen next switch(command_[0] & 0x1f) { case 0x06: // read data case 0x0b: // read deleted data goto read_data_found_header; case 0x05: // write data case 0x09: // write deleted data goto write_data_found_header; } // Sets abnormal termination of the current command and proceeds to an ST0, ST1, ST2, C, H, R, N result phase. abort_read_write: SetAbnormalTermination(); goto post_st012chrn; // Performs the read data or read deleted data command. read_data: read_next_data: goto read_write_find_header; // Finds the next data block and sets data mode to reading, setting an error flag if the on-disk deleted // flag doesn't match the sort the command was looking for. read_data_found_header: FIND_DATA(); distance_into_section_ = 0; if((get_latest_token().type == Token::Data) != ((command_[0]&0xf) == 0x6)) { if(!(command_[0]&0x20)) { // SK is not set; set the error flag but read this sector before finishing. SetControlMark(); } else { // SK is set; skip this sector. goto read_next_data; } } set_data_mode(Reading); // Waits for the next token, then supplies it to the CPU by: (i) setting data request and direction; and (ii) resetting // data request once the byte has been taken. Continues until all bytes have been read. // // TODO: signal if the CPU is too slow and missed a byte; at the minute it'll just silently miss. Also allow for other // ways that sector size might have been specified. get_byte: WAIT_FOR_EVENT(Event::Token); result_stack_.push_back(get_latest_token().byte_value); distance_into_section_++; SetDataRequest(); SetDataDirectionToProcessor(); WAIT_FOR_EVENT((int)Event8272::ResultEmpty | (int)Event::Token | (int)Event::IndexHole); switch(event_type) { case (int)Event8272::ResultEmpty: // The caller read the byte in time; proceed as normal. ResetDataRequest(); if(distance_into_section_ < (128 << size_)) goto get_byte; break; case (int)Event::Token: // The caller hasn't read the old byte yet and a new one has arrived SetOverrun(); goto abort_read_write; break; case (int)Event::IndexHole: break; } // read CRC, without transferring it, then check it WAIT_FOR_EVENT(Event::Token); WAIT_FOR_EVENT(Event::Token); if(get_crc_generator().get_value()) { // This implies a CRC error in the sector; mark as such and temrinate. SetDataError(); SetDataFieldDataError(); goto abort_read_write; } // check whether that's it: either the final requested sector has been read, or because // a sector that was [/wasn't] marked as deleted when it shouldn't [/should] have been if(sector_ != command_[6] && !ControlMark()) { sector_++; goto read_next_data; } // For a final result phase, post the standard ST0, ST1, ST2, C, H, R, N goto post_st012chrn; write_data: printf("Write [deleted] data\n"); write_next_data: goto read_write_find_header; write_data_found_header: begin_writing(); // Write out the requested gap between ID and data. for(int c = 0; c < command_[7]; c++) { write_byte(0x4e); } WAIT_FOR_EVENT(Event::DataWritten); { bool is_deleted = (command_[0] & 0x1f) == 0x09; if(get_is_double_density()) { get_crc_generator().set_value(Storage::Encodings::MFM::MFMPostSyncCRCValue); write_raw_short(Storage::Encodings::MFM::MFMSync); write_byte(is_deleted ? Storage::Encodings::MFM::DeletedDataAddressByte : Storage::Encodings::MFM::DataAddressByte); } else { get_crc_generator().reset(); get_crc_generator().add(is_deleted ? Storage::Encodings::MFM::DeletedDataAddressByte : Storage::Encodings::MFM::DataAddressByte); write_raw_short(is_deleted ? Storage::Encodings::MFM::FMDeletedDataAddressMark : Storage::Encodings::MFM::FMDataAddressMark); } } SetDataDirectionFromProcessor(); SetDataRequest(); expects_input_ = true; distance_into_section_ = 0; write_loop: WAIT_FOR_EVENT(Event::DataWritten); if(!has_input_) { SetOverrun(); end_writing(); goto abort_read_write; } write_byte(input_); has_input_ = false; distance_into_section_++; if(distance_into_section_ < (128 << size_)) { SetDataRequest(); goto write_loop; } write_crc(); expects_input_ = false; WAIT_FOR_EVENT(Event::DataWritten); end_writing(); goto post_st012chrn; read_track: printf("Read track unimplemented!!\n"); goto wait_for_command; // Performs the read ID command. read_id: // Establishes the drive and head being addressed, and whether in double density mode. printf("Read ID\n"); SET_DRIVE_HEAD_MFM(); LOAD_HEAD(); // Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes. // If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found. index_hole_limit_ = 2; read_id_find_next_sector: FIND_HEADER(); if(!index_hole_limit_) { SetNoData(); goto abort_read_write; } READ_HEADER(); // Sets internal registers from the discovered header and posts the standard ST0, ST1, ST2, C, H, R, N. cylinder_ = header_[0]; head_ = header_[1]; sector_ = header_[2]; size_ = header_[3]; goto post_st012chrn; format_track: printf("Format track\n"); SET_DRIVE_HEAD_MFM(); LOAD_HEAD(); CLEAR_STATUS(); // Wait for the index hole. WAIT_FOR_EVENT(Event::IndexHole); begin_writing(); // Write start-of-track. // TODO: single density. for(int c = 0; c < 80; c++) { write_byte(0x4e); } for(int c = 0; c < 12; c++) { write_byte(0x00); } for(int c = 0; c < 3; c++) { write_raw_short(Storage::Encodings::MFM::MFMIndexSync); } write_byte(Storage::Encodings::MFM::IndexAddressByte); for(int c = 0; c < 50; c++) { write_byte(0x4e); } WAIT_FOR_EVENT(Event::DataWritten); sector_ = 0; format_track_write_sector: for(int c = 0; c < 12; c++) { write_byte(0x00); } for(int c = 0; c < 3; c++) { write_raw_short(Storage::Encodings::MFM::MFMSync); } get_crc_generator().set_value(Storage::Encodings::MFM::MFMPostSyncCRCValue); write_byte(Storage::Encodings::MFM::IDAddressByte); // Write the sector header, obtaining its contents // from the processor. SetDataDirectionFromProcessor(); SetDataRequest(); expects_input_ = true; distance_into_section_ = 0; format_track_write_header: WAIT_FOR_EVENT(Event::DataWritten); // TODO: overrun? header_[distance_into_section_] = input_; write_byte(input_); has_input_ = false; distance_into_section_++; if(distance_into_section_ < 4) { SetDataRequest(); goto format_track_write_header; } write_crc(); // Write the sector body. for(int c = 0; c < 22; c++) { write_byte(0x4e); } for(int c = 0; c < 12; c++) { write_byte(0x00); } for(int c = 0; c < 3; c++) { write_raw_short(Storage::Encodings::MFM::MFMSync); } get_crc_generator().set_value(Storage::Encodings::MFM::MFMPostSyncCRCValue); write_byte(Storage::Encodings::MFM::DataAddressByte); for(int c = 0; c < (128 << command_[2]); c++) { write_byte(command_[5]); } write_crc(); // Write the prescribed gap. for(int c = 0; c < command_[4]; c++) { write_byte(0x4e); } // Consider repeating. sector_++; if(sector_ < command_[3]) { goto format_track_write_sector; } // Otherwise, pad out to the index hole. format_track_pad: write_byte(0x4e); WAIT_FOR_EVENT((int)Event::DataWritten | (int)Event::IndexHole); if(event_type != (int)Event::IndexHole) goto format_track_pad; end_writing(); cylinder_ = header_[0]; head_ = header_[1]; sector_ = header_[2] + 1; size_ = header_[3]; goto post_st012chrn; scan_low: printf("Scan low unimplemented!!\n"); goto wait_for_command; scan_low_or_equal: printf("Scan low or equal unimplemented!!\n"); goto wait_for_command; scan_high_or_equal: printf("Scan high or equal unimplemented!!\n"); goto wait_for_command; // Performs both recalibrate and seek commands. These commands occur asynchronously, so the actual work // occurs in ::run_for; this merely establishes that seeking should be ongoing. recalibrate: seek: printf((command_.size() > 2) ? "Seek\n" : "Recalibrate\n"); // Declines to act if a seek is already ongoing; otherwise resets all status registers, sets the drive // into seeking mode, sets the drive's main status seeking bit, and sets the target head position: for // a recalibrate the target is -1 and ::run_for knows that -1 means the terminal condition is the drive // returning that its at track zero, and that it should reset the drive's current position once reached. if(drives_[command_[1]&3].phase != Drive::Seeking) { int drive = command_[1]&3; drives_[drive].phase = Drive::Seeking; drives_[drive].steps_taken = 0; drives_[drive].target_head_position = (command_.size() > 2) ? command_[2] : -1; drives_[drive].step_rate_counter = 0; drives_[drive].seek_failed = false; // Check whether any steps are even needed. if(drives_[drive].seek_is_satisfied()) { drives_[drive].phase = Drive::CompletedSeeking; } else { main_status_ |= 1 << (command_[1]&3); } } goto wait_for_command; // Performs sense interrupt status. sense_interrupt_status: printf("Sense interrupt status\n"); { // Find the first drive that is in the CompletedSeeking state. int found_drive = -1; for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::CompletedSeeking) { found_drive = c; break; } } // If a drive was found, return its results. Otherwise return a single 0x80. if(found_drive != -1) { drives_[found_drive].phase = Drive::NotSeeking; status_[0] = (uint8_t)found_drive; SetSeekEnd(); main_status_ &= ~(1 << found_drive); result_stack_.push_back(drives_[found_drive].head_position); result_stack_.push_back(status_[0]); } else { result_stack_.push_back(0x80); } } goto post_result; // Performs specify. specify: // Just store the values, and terminate the command. step_rate_time_ = command_[1] &0xf0; // i.e. 16 to 240m head_unload_time_ = command_[1] & 0x0f; // i.e. 1 to 16ms head_load_time_ = command_[2] & ~1; // i.e. 2 to 254 ms in increments of 2ms dma_mode_ = !(command_[2] & 1); goto wait_for_command; sense_drive_status: { int drive = command_[1] & 3; result_stack_.push_back( (command_[1] & 7) | // drive and head number 0x08 | // single sided (drives_[drive].drive->get_is_track_zero() ? 0x10 : 0x00) | (drives_[drive].drive->get_is_ready() ? 0x20 : 0x00) | (drives_[drive].drive->get_is_read_only() ? 0x40 : 0x00) ); } goto post_result; // Performs any invalid command. invalid: // A no-op, but posts ST0 (but which ST0?) result_stack_.push_back(0x80); goto post_result; // Posts ST0, ST1, ST2, C, H, R and N as a result phase. post_st012chrn: SCHEDULE_HEAD_UNLOAD(); result_stack_.push_back(size_); result_stack_.push_back(sector_); result_stack_.push_back(head_); result_stack_.push_back(cylinder_); result_stack_.push_back(status_[2]); result_stack_.push_back(status_[1]); result_stack_.push_back(status_[0]); goto post_result; // Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack — the // last thing in it will be returned first. post_result: // Set ready to send data to the processor, no longer in non-DMA execution phase. ResetNonDMAExecution(); SetDataRequest(); SetDataDirectionToProcessor(); // The actual stuff of unwinding result_stack_ is handled by ::get_register; wait // until the processor has read all result bytes. WAIT_FOR_EVENT(Event8272::ResultEmpty); // Reset data direction and end the command. goto wait_for_command; END_SECTION() } bool i8272::Drive::seek_is_satisfied() { return (target_head_position == head_position) || (target_head_position == -1 && drive->get_is_track_zero()); }