// CRTOpenGL.cpp // Clock Signal // // Created by Thomas Harte on 03/02/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include #include #include "CRTOpenGL.hpp" #include "../../../SignalProcessing/FIRFilter.hpp" #include "Shaders/OutputShader.hpp" static const GLint internalFormatForDepth(size_t depth) { switch(depth) { default: return GL_FALSE; case 1: return GL_R8UI; case 2: return GL_RG8UI; case 3: return GL_RGB8UI; case 4: return GL_RGBA8UI; } } static const GLenum formatForDepth(size_t depth) { switch(depth) { default: return GL_FALSE; case 1: return GL_RED_INTEGER; case 2: return GL_RG_INTEGER; case 3: return GL_RGB_INTEGER; case 4: return GL_RGBA_INTEGER; } } struct Range { GLsizei location, length; }; static int getCircularRanges(GLsizei *start_pointer, GLsizei *end_pointer, GLsizei buffer_length, GLsizei granularity, GLsizei offset, Range *ranges) { GLsizei start = *start_pointer; GLsizei end = *end_pointer; *end_pointer %= buffer_length; *start_pointer = *end_pointer; start += offset; end += offset; start -= start%granularity; end -= end%granularity; GLsizei length = end - start; if(!length) return 0; if(length >= buffer_length) { ranges[0].location = 0; ranges[0].length = buffer_length; return 1; } else { ranges[0].location = start % buffer_length; if(ranges[0].location + length <= buffer_length) { ranges[0].length = length; return 1; } else { ranges[0].length = buffer_length - ranges[0].location; ranges[1].location = 0; ranges[1].length = length - ranges[0].length; return 2; } } } static GLsizei submitArrayData(GLuint buffer, uint8_t *source, GLsizei *length_pointer) { GLsizei length = *length_pointer; glBindBuffer(GL_ARRAY_BUFFER, buffer); uint8_t *data = (uint8_t *)glMapBufferRange(GL_ARRAY_BUFFER, 0, length, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT); memcpy(data, source, (size_t)length); glFlushMappedBufferRange(GL_ARRAY_BUFFER, 0, length); glUnmapBuffer(GL_ARRAY_BUFFER); *length_pointer = 0; return length; } using namespace Outputs::CRT; namespace { static const GLenum composite_texture_unit = GL_TEXTURE0; static const GLenum separated_texture_unit = GL_TEXTURE1; static const GLenum filtered_y_texture_unit = GL_TEXTURE2; static const GLenum filtered_texture_unit = GL_TEXTURE3; static const GLenum source_data_texture_unit = GL_TEXTURE4; static const GLenum pixel_accumulation_texture_unit = GL_TEXTURE5; } OpenGLOutputBuilder::OpenGLOutputBuilder(unsigned int buffer_depth) : _output_mutex(new std::mutex), _visible_area(Rect(0, 0, 1, 1)), _composite_src_output_y(0), _cleared_composite_output_y(0), _composite_shader(nullptr), _rgb_shader(nullptr), _output_buffer_data(new uint8_t[OutputVertexBufferDataSize]), _source_buffer_data(new uint8_t[SourceVertexBufferDataSize]), _output_buffer_data_pointer(0), _source_buffer_data_pointer(0), _last_output_width(0), _last_output_height(0), _fence(nullptr) { _buffer_builder = std::unique_ptr(new CRTInputBufferBuilder(buffer_depth)); glBlendFunc(GL_SRC_ALPHA, GL_CONSTANT_COLOR); glBlendColor(0.6f, 0.6f, 0.6f, 1.0f); // Create intermediate textures and bind to slots 0, 1 and 2 compositeTexture = std::unique_ptr(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, composite_texture_unit)); separatedTexture = std::unique_ptr(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, separated_texture_unit)); filteredYTexture = std::unique_ptr(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, filtered_y_texture_unit)); filteredTexture = std::unique_ptr(new OpenGL::TextureTarget(IntermediateBufferWidth, IntermediateBufferHeight, filtered_texture_unit)); // create the surce texture glGenTextures(1, &textureName); glActiveTexture(source_data_texture_unit); glBindTexture(GL_TEXTURE_2D, textureName); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, internalFormatForDepth(_buffer_builder->get_bytes_per_pixel()), InputBufferBuilderWidth, InputBufferBuilderHeight, 0, formatForDepth(_buffer_builder->get_bytes_per_pixel()), GL_UNSIGNED_BYTE, nullptr); // create the output vertex array glGenVertexArrays(1, &output_vertex_array); // create a buffer for output vertex attributes glGenBuffers(1, &output_array_buffer); glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer); glBufferData(GL_ARRAY_BUFFER, OutputVertexBufferDataSize, NULL, GL_STREAM_DRAW); // create the source vertex array glGenVertexArrays(1, &source_vertex_array); // create a buffer for source vertex attributes glGenBuffers(1, &source_array_buffer); glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer); glBufferData(GL_ARRAY_BUFFER, SourceVertexBufferDataSize, NULL, GL_STREAM_DRAW); } OpenGLOutputBuilder::~OpenGLOutputBuilder() { glDeleteTextures(1, &textureName); glDeleteBuffers(1, &output_array_buffer); glDeleteBuffers(1, &source_array_buffer); glDeleteVertexArrays(1, &output_vertex_array); free(_composite_shader); free(_rgb_shader); } void OpenGLOutputBuilder::draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty) { // lock down any further work on the current frame _output_mutex->lock(); // establish essentials if(!output_shader_program) { prepare_composite_input_shaders(); prepare_rgb_input_shaders(); prepare_source_vertex_array(); prepare_output_shader(); prepare_output_vertex_array(); set_timing_uniforms(); set_colour_space_uniforms(); } if(_fence != nullptr) { glClientWaitSync(_fence, GL_SYNC_FLUSH_COMMANDS_BIT, GL_TIMEOUT_IGNORED); glDeleteSync(_fence); } // release the mapping, giving up on trying to draw if data has been lost GLsizei submitted_output_data = submitArrayData(output_array_buffer, _output_buffer_data.get(), &_output_buffer_data_pointer); // bind and flush the source array buffer GLsizei submitted_source_data = submitArrayData(source_array_buffer, _source_buffer_data.get(), &_source_buffer_data_pointer); // determine how many lines are newly reclaimed; they'll need to be cleared Range clearing_zones[2]; // the clearing zones for the composite output Y are calculated with a fixed offset of '1' which has the effect of clearing // one ahead of the expected drawing area this frame; that's because the current _composite_src_output_y may or may not have been // written to during the last update, so we want it to have been cleared during the last update. int number_of_clearing_zones = getCircularRanges(&_cleared_composite_output_y, &_composite_src_output_y, IntermediateBufferHeight, 1, 1, clearing_zones); uint16_t completed_texture_y = _buffer_builder->get_and_finalise_current_line(); // make sure there's a target to draw to if(!framebuffer || framebuffer->get_height() != output_height || framebuffer->get_width() != output_width) { std::unique_ptr new_framebuffer = std::unique_ptr(new OpenGL::TextureTarget((GLsizei)output_width, (GLsizei)output_height, pixel_accumulation_texture_unit)); if(framebuffer) { new_framebuffer->bind_framebuffer(); glClear(GL_COLOR_BUFFER_BIT); glActiveTexture(pixel_accumulation_texture_unit); framebuffer->bind_texture(); framebuffer->draw((float)output_width / (float)output_height); new_framebuffer->bind_texture(); } framebuffer = std::move(new_framebuffer); } // upload new source pixels if(completed_texture_y) { glActiveTexture(source_data_texture_unit); glTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, InputBufferBuilderWidth, completed_texture_y, formatForDepth(_buffer_builder->get_bytes_per_pixel()), GL_UNSIGNED_BYTE, _buffer_builder->get_image_pointer()); } struct RenderStage { OpenGL::TextureTarget *const target; OpenGL::Shader *const shader; float clear_colour[3]; }; RenderStage composite_render_stages[] = { {compositeTexture.get(), composite_input_shader_program.get(), {0.0, 0.0, 0.0}}, {separatedTexture.get(), composite_separation_filter_program.get(), {0.0, 0.5, 0.5}}, {filteredYTexture.get(), composite_y_filter_shader_program.get(), {0.0, 0.5, 0.5}}, {filteredTexture.get(), composite_chrominance_filter_shader_program.get(), {0.0, 0.0, 0.0}}, {nullptr} }; RenderStage rgb_render_stages[] = { {compositeTexture.get(), rgb_input_shader_program.get(), {0.0, 0.0, 0.0}}, {filteredTexture.get(), rgb_filter_shader_program.get(), {0.0, 0.0, 0.0}}, {nullptr} }; RenderStage *active_pipeline = (_output_device == Television || !rgb_input_shader_program) ? composite_render_stages : rgb_render_stages; // for television, update intermediate buffers and then draw; for a monitor, just draw if(submitted_source_data) { // all drawing will be from the source vertex array and without blending glBindVertexArray(source_vertex_array); glDisable(GL_BLEND); while(active_pipeline->target) { // switch to the initial texture active_pipeline->target->bind_framebuffer(); active_pipeline->shader->bind(); // clear as desired if(number_of_clearing_zones) { glEnable(GL_SCISSOR_TEST); glClearColor(active_pipeline->clear_colour[0], active_pipeline->clear_colour[1], active_pipeline->clear_colour[2], 1.0); for(int c = 0; c < number_of_clearing_zones; c++) { glScissor(0, clearing_zones[c].location, IntermediateBufferWidth, clearing_zones[c].length); glClear(GL_COLOR_BUFFER_BIT); } glDisable(GL_SCISSOR_TEST); } // draw as desired glDrawArraysInstanced(GL_LINES, 0, 2, submitted_source_data / SourceVertexSize); active_pipeline++; } } // transfer to framebuffer framebuffer->bind_framebuffer(); if(submitted_output_data) { glEnable(GL_BLEND); // Ensure we're back on the output framebuffer, drawing from the output array buffer glBindVertexArray(output_vertex_array); // update uniforms (implicitly binding the shader) if(_last_output_width != output_width || _last_output_height != output_height) { output_shader_program->set_output_size(output_width, output_height, _visible_area); _last_output_width = output_width; _last_output_height = output_height; } output_shader_program->bind(); // draw glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, submitted_output_data / OutputVertexSize); } // copy framebuffer to the intended place glDisable(GL_BLEND); glBindFramebuffer(GL_FRAMEBUFFER, 0); glViewport(0, 0, (GLsizei)output_width, (GLsizei)output_height); glClear(GL_COLOR_BUFFER_BIT); glActiveTexture(pixel_accumulation_texture_unit); framebuffer->bind_texture(); framebuffer->draw((float)output_width / (float)output_height); _fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); _output_mutex->unlock(); } void OpenGLOutputBuilder::reset_all_OpenGL_state() { composite_input_shader_program = nullptr; composite_separation_filter_program = nullptr; composite_y_filter_shader_program = nullptr; composite_chrominance_filter_shader_program = nullptr; rgb_input_shader_program = nullptr; rgb_filter_shader_program = nullptr; output_shader_program = nullptr; framebuffer = nullptr; _last_output_width = _last_output_height = 0; } void OpenGLOutputBuilder::set_openGL_context_will_change(bool should_delete_resources) { _output_mutex->lock(); reset_all_OpenGL_state(); _output_mutex->unlock(); } void OpenGLOutputBuilder::set_composite_sampling_function(const char *shader) { _output_mutex->lock(); _composite_shader = strdup(shader); reset_all_OpenGL_state(); _output_mutex->unlock(); } void OpenGLOutputBuilder::set_rgb_sampling_function(const char *shader) { _output_mutex->lock(); _rgb_shader = strdup(shader); reset_all_OpenGL_state(); _output_mutex->unlock(); } #pragma mark - Program compilation void OpenGLOutputBuilder::prepare_composite_input_shaders() { composite_input_shader_program = OpenGL::IntermediateShader::make_source_conversion_shader(_composite_shader, _rgb_shader); composite_input_shader_program->set_source_texture_unit(source_data_texture_unit); composite_input_shader_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); composite_separation_filter_program = OpenGL::IntermediateShader::make_chroma_luma_separation_shader(); composite_separation_filter_program->set_source_texture_unit(composite_texture_unit); composite_separation_filter_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); composite_y_filter_shader_program = OpenGL::IntermediateShader::make_luma_filter_shader(); composite_y_filter_shader_program->set_source_texture_unit(separated_texture_unit); composite_y_filter_shader_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); composite_chrominance_filter_shader_program = OpenGL::IntermediateShader::make_chroma_filter_shader(); composite_chrominance_filter_shader_program->set_source_texture_unit(filtered_y_texture_unit); composite_chrominance_filter_shader_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); } void OpenGLOutputBuilder::prepare_rgb_input_shaders() { if(_rgb_shader) { rgb_input_shader_program = OpenGL::IntermediateShader::make_rgb_source_shader(_rgb_shader); rgb_input_shader_program->set_source_texture_unit(source_data_texture_unit); rgb_input_shader_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); rgb_filter_shader_program = OpenGL::IntermediateShader::make_rgb_filter_shader(); rgb_filter_shader_program->set_source_texture_unit(composite_texture_unit); rgb_filter_shader_program->set_output_size(IntermediateBufferWidth, IntermediateBufferHeight); } } void OpenGLOutputBuilder::prepare_source_vertex_array() { if(composite_input_shader_program) { glBindVertexArray(source_vertex_array); glBindBuffer(GL_ARRAY_BUFFER, source_array_buffer); composite_input_shader_program->enable_vertex_attribute_with_pointer("inputStart", 2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize, (void *)SourceVertexOffsetOfInputStart, 1); composite_input_shader_program->enable_vertex_attribute_with_pointer("outputStart", 2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize, (void *)SourceVertexOffsetOfOutputStart, 1); composite_input_shader_program->enable_vertex_attribute_with_pointer("ends", 2, GL_UNSIGNED_SHORT, GL_FALSE, SourceVertexSize, (void *)SourceVertexOffsetOfEnds, 1); composite_input_shader_program->enable_vertex_attribute_with_pointer("phaseTimeAndAmplitude", 3, GL_UNSIGNED_BYTE, GL_FALSE, SourceVertexSize, (void *)SourceVertexOffsetOfPhaseTimeAndAmplitude, 1); } } void OpenGLOutputBuilder::prepare_output_shader() { output_shader_program = OpenGL::OutputShader::make_shader("", "texture(texID, srcCoordinatesVarying).rgb", false); output_shader_program->set_source_texture_unit(filtered_texture_unit); } void OpenGLOutputBuilder::prepare_output_vertex_array() { if(output_shader_program) { glBindVertexArray(output_vertex_array); glBindBuffer(GL_ARRAY_BUFFER, output_array_buffer); output_shader_program->enable_vertex_attribute_with_pointer("horizontal", 2, GL_UNSIGNED_SHORT, GL_FALSE, OutputVertexSize, (void *)OutputVertexOffsetOfHorizontal, 1); output_shader_program->enable_vertex_attribute_with_pointer("vertical", 2, GL_UNSIGNED_SHORT, GL_FALSE, OutputVertexSize, (void *)OutputVertexOffsetOfVertical, 1); } } #pragma mark - Public Configuration void OpenGLOutputBuilder::set_output_device(OutputDevice output_device) { if(_output_device != output_device) { _output_device = output_device; _composite_src_output_y = 0; _last_output_width = 0; _last_output_height = 0; } } void OpenGLOutputBuilder::set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider) { _output_mutex->lock(); _input_frequency = input_frequency; _cycles_per_line = cycles_per_line; _height_of_display = height_of_display; _horizontal_scan_period = horizontal_scan_period; _vertical_scan_period = vertical_scan_period; _vertical_period_divider = vertical_period_divider; set_timing_uniforms(); _output_mutex->unlock(); } #pragma mark - Internal Configuration void OpenGLOutputBuilder::set_colour_space_uniforms() { GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f}; GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f}; GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f}; GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f}; GLfloat *fromRGB, *toRGB; switch(_colour_space) { case ColourSpace::YIQ: fromRGB = rgbToYIQ; toRGB = yiqToRGB; break; case ColourSpace::YUV: fromRGB = rgbToYUV; toRGB = yuvToRGB; break; } if(composite_input_shader_program) composite_input_shader_program->set_colour_conversion_matrices(fromRGB, toRGB); if(composite_chrominance_filter_shader_program) composite_chrominance_filter_shader_program->set_colour_conversion_matrices(fromRGB, toRGB); } void OpenGLOutputBuilder::set_timing_uniforms() { OpenGL::IntermediateShader *intermediate_shaders[] = { composite_input_shader_program.get(), composite_separation_filter_program.get(), composite_y_filter_shader_program.get(), composite_chrominance_filter_shader_program.get() }; bool extends = false; float phaseCyclesPerTick = (float)_colour_cycle_numerator / (float)(_colour_cycle_denominator * _cycles_per_line); for(int c = 0; c < 3; c++) { if(intermediate_shaders[c]) intermediate_shaders[c]->set_phase_cycles_per_sample(phaseCyclesPerTick, extends); extends = true; } if(output_shader_program) output_shader_program->set_timing(_height_of_display, _cycles_per_line, _horizontal_scan_period, _vertical_scan_period, _vertical_period_divider); float colour_subcarrier_frequency = (float)_colour_cycle_numerator / (float)_colour_cycle_denominator; if(composite_separation_filter_program) composite_separation_filter_program->set_separation_frequency(_cycles_per_line, colour_subcarrier_frequency); if(composite_y_filter_shader_program) composite_y_filter_shader_program->set_filter_coefficients(_cycles_per_line, colour_subcarrier_frequency * 0.66f); if(composite_chrominance_filter_shader_program) composite_chrominance_filter_shader_program->set_filter_coefficients(_cycles_per_line, colour_subcarrier_frequency * 0.5f); if(rgb_filter_shader_program) rgb_filter_shader_program->set_filter_coefficients(_cycles_per_line, (float)_input_frequency * 0.5f); }