// // AmstradCPC.cpp // Clock Signal // // Created by Thomas Harte on 30/07/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "AmstradCPC.hpp" using namespace AmstradCPC; Machine::Machine() : crtc_counter_(HalfCycles(4)), // This starts the CRTC exactly out of phase with the memory accesses crtc_(crtc_bus_handler_) { // primary clock is 4Mhz set_clock_rate(4000000); } HalfCycles Machine::perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { // Amstrad CPC timing scheme: assert WAIT for three out of four cycles clock_offset_ = (clock_offset_ + cycle.length) & HalfCycles(7); set_wait_line(clock_offset_ >= HalfCycles(2)); // Update the CRTC once every eight half cycles; aiming for half-cycle 4 as // per the initial seed to the crtc_counter_, but any time in the final four // will do as it's safe to conclude that nobody else has touched video RAM // during that whole window crtc_counter_ += cycle.length; int crtc_cycles = crtc_counter_.divide(HalfCycles(8)).as_int(); if(crtc_cycles) crtc_.run_for(Cycles(1)); // Stop now if no action is strictly required. if(!cycle.is_terminal()) return HalfCycles(0); uint16_t address = cycle.address ? *cycle.address : 0x0000; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::ReadOpcode: case CPU::Z80::PartialMachineCycle::Read: *cycle.value = read_pointers_[address >> 14][address & 16383]; break; case CPU::Z80::PartialMachineCycle::Write: write_pointers_[address >> 14][address & 16383] = *cycle.value; break; case CPU::Z80::PartialMachineCycle::Output: // Check for a gate array access. if((address & 0xc000) == 0x4000) { switch(*cycle.value >> 6) { case 0: printf("Select pen %02x\n", *cycle.value & 0x1f); break; case 1: printf("Select colour %02x\n", *cycle.value & 0x1f); break; case 2: printf("Set mode %d, other flags %02x\n", *cycle.value & 3, (*cycle.value >> 2)&7); read_pointers_[0] = (*cycle.value & 4) ? &ram_[0] : os_.data(); read_pointers_[3] = (*cycle.value & 8) ? &ram_[49152] : basic_.data(); break; case 3: printf("RAM paging?\n"); break; } } // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: crtc_.select_register(*cycle.value); break; case 1: crtc_.set_register(*cycle.value); break; case 2: case 3: printf("Illegal CRTC write?\n"); break; } } // Check for a PIO access if(!(address & 0x800)) { switch((address >> 8) & 3) { case 0: printf("PSG data: %d\n", *cycle.value); break; case 1: printf("Vsync, etc: %02x\n", *cycle.value); break; case 2: printf("Key row, etc: %02x\n", *cycle.value); break; case 3: printf("PIO control: %02x\n", *cycle.value); break; } } break; case CPU::Z80::PartialMachineCycle::Input: // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: case 1: printf("Illegal CRTC read?\n"); break; case 2: *cycle.value = crtc_.get_status(); break; case 3: *cycle.value = crtc_.get_register(); break; } } // Check for a PIO access if(!(address & 0x800)) { switch((address >> 8) & 3) { case 0: printf("[In] PSG data\n"); break; case 1: printf("[In] Vsync, etc\n"); break; case 2: printf("[In] Key row, etc\n"); break; case 3: printf("[In] PIO control\n"); break; } } *cycle.value = 0xff; break; case CPU::Z80::PartialMachineCycle::Interrupt: *cycle.value = 0xff; break; default: break; } return HalfCycles(0); } void Machine::flush() { } void Machine::set_rom(ROMType type, std::vector data) { // Keep only the two ROMs that are currently of interest. switch(type) { case ROMType::OS464: os_ = data; break; case ROMType::BASIC464: basic_ = data; break; default: break; } } void Machine::setup_output(float aspect_ratio) { crtc_bus_handler_.crt_.reset(new Outputs::CRT::CRT(1024, 8, Outputs::CRT::DisplayType::PAL50, 1)); crtc_bus_handler_.crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "return vec3(float(texture(texID, coordinate).r) / 255.0);" "}"); } void Machine::close_output() { crtc_bus_handler_.crt_.reset(); } std::shared_ptr Machine::get_crt() { return crtc_bus_handler_.crt_; } std::shared_ptr Machine::get_speaker() { return nullptr; } void Machine::run_for(const Cycles cycles) { CPU::Z80::Processor::run_for(cycles); } void Machine::configure_as_target(const StaticAnalyser::Target &target) { read_pointers_[0] = os_.data(); read_pointers_[1] = &ram_[16384]; read_pointers_[2] = &ram_[32768]; read_pointers_[3] = basic_.data(); write_pointers_[0] = &ram_[0]; write_pointers_[1] = &ram_[16384]; write_pointers_[2] = &ram_[32768]; write_pointers_[3] = &ram_[49152]; }