// // PerformImplementation.hpp // Clock Signal // // Created by Thomas Harte on 28/04/2022. // Copyright © 2022 Thomas Harte. All rights reserved. // #ifndef InstructionSets_M68k_PerformImplementation_h #define InstructionSets_M68k_PerformImplementation_h #include "../ExceptionVectors.hpp" #include #include namespace InstructionSet { namespace M68k { #define u_extend16(x) uint32_t(int16_t(x)) #define s_extend16(x) int32_t(int16_t(x)) namespace Primitive { /// @returns An int of type @c IntT with only the most-significant bit set. template constexpr IntT top_bit() { static_assert(!std::numeric_limits::is_signed); constexpr IntT max = std::numeric_limits::max(); return max - (max >> 1); } /// @returns The number of bits in @c IntT. template constexpr int bit_count() { return sizeof(IntT) * 8; } /// @returns An int with the top bit indicating whether overflow occurred when @c source and @c destination /// were either added (if @c is_add is true) or subtracted (if @c is_add is false) and the result was @c result. /// All other bits will be clear. template static Status::FlagT overflow(IntT source, IntT destination, IntT result) { const IntT output_changed = result ^ destination; const IntT input_differed = source ^ destination; if constexpr (is_add) { return top_bit() & output_changed & ~input_differed; } else { return top_bit() & output_changed & input_differed; } } /// Performs an add or subtract (as per @c is_add) between @c source and @c destination, /// updating @c status. @c is_extend indicates whether this is an extend operation (e.g. ADDX) /// or a plain one (e.g. ADD). template static void add_sub(IntT source, IntT &destination, Status &status) { static_assert(!std::numeric_limits::is_signed); const IntT extend = (is_extend && status.extend_flag) ? 1 : 0; const IntT result = is_add ? (destination + source + extend) : (destination - source - extend); // Extend operations can reset the zero flag only; non-extend operations // can either set it or reset it. Which in the reverse-logic world of // zero_result means ORing or storing. if constexpr (is_extend) { status.zero_result |= Status::FlagT(result); } else { status.zero_result = Status::FlagT(result); } status.extend_flag = status.carry_flag = is_add ? result < destination : result > destination; status.negative_flag = Status::FlagT(result & top_bit()); status.overflow_flag = overflow(source, destination, result); destination = result; } /// Performs a compare of @c source to @c destination, setting zero, carry, negative and overflow flags. template static void compare(IntT source, IntT destination, Status &status) { const IntT result = destination - source; status.zero_result = result; status.carry_flag = result > destination; status.negative_flag = result & top_bit(); status.overflow_flag = Primitive::overflow(source, destination, result); } /// @returns the name of the bit to be used as a mask for BCLR, BCHG, BSET or BTST for /// @c instruction given @c source. inline uint32_t mask_bit(const Preinstruction &instruction, uint32_t source) { return source & (instruction.mode<1>() == AddressingMode::DataRegisterDirect ? 31 : 7); } /// Performs a BCLR, BCHG or BSET as specified by @c operation and described by @c instruction, @c source and @c destination, updating @c destination and @c status. /// Also makes an appropriate notification to the @c flow_controller. template void bit_manipulate(const Preinstruction &instruction, uint32_t source, uint32_t &destination, Status &status, FlowController &flow_controller) { static_assert( operation == Operation::BCLR || operation == Operation::BCHG || operation == Operation::BSET); const auto bit = mask_bit(instruction, source); status.zero_result = destination & (1 << bit); switch(operation) { case Operation::BCLR: destination &= ~(1 << bit); break; case Operation::BCHG: destination ^= (1 << bit); break; case Operation::BSET: destination |= (1 << bit); break; } flow_controller.did_bit_op(int(bit)); } /// Sets @c destination to 0, clears the overflow, carry and negative flags, sets the zero flag. template void clear(IntT &destination, Status &status) { destination = 0; status.negative_flag = status.overflow_flag = status.carry_flag = status.zero_result = 0; } template void apply_sr_ccr(uint16_t source, Status &status, FlowController &flow_controller) { static_assert( operation == Operation::ANDItoSR || operation == Operation::ANDItoCCR || operation == Operation::EORItoSR || operation == Operation::EORItoCCR || operation == Operation::ORItoSR || operation == Operation::ORItoCCR ); auto sr = status.status(); switch(operation) { case Operation::ANDItoSR: case Operation::ANDItoCCR: sr &= source; break; case Operation::EORItoSR: case Operation::EORItoCCR: sr ^= source; break; case Operation::ORItoSR: case Operation::ORItoCCR: sr |= source; break; } switch(operation) { case Operation::ANDItoSR: case Operation::EORItoSR: case Operation::ORItoSR: status.set_status(sr); flow_controller.did_update_status(); break; case Operation::ANDItoCCR: case Operation::EORItoCCR: case Operation::ORItoCCR: status.set_ccr(sr); break; } } template void multiply(uint16_t source, uint32_t &destination, Status &status, FlowController &flow_controller) { if constexpr (is_mulu) { destination = source * uint16_t(destination); } else { destination = u_extend16(source) * u_extend16(uint16_t(destination)); } status.carry_flag = status.overflow_flag = 0; status.zero_result = destination; status.negative_flag = status.zero_result & top_bit(); if constexpr (is_mulu) { flow_controller.did_mulu(source); } else { flow_controller.did_muls(source); } } template void did_divide(IntT dividend, IntT divisor, FlowController &flow_controller) { if constexpr (is_divu) { flow_controller.template did_divu(dividend, divisor); } else { flow_controller.template did_divs(dividend, divisor); } } template void divide(uint16_t source, uint32_t &destination, Status &status, FlowController &flow_controller) { status.carry_flag = 0; const auto dividend = Int32(destination); const auto divisor = Int32(Int16(source)); if(!divisor) { status.negative_flag = status.overflow_flag = 0; status.zero_result = 1; flow_controller.raise_exception(Exception::IntegerDivideByZero); did_divide(dividend, divisor, flow_controller); return; } const auto quotient = int64_t(dividend) / int64_t(divisor); if(quotient != Int32(Int16(quotient))) { status.overflow_flag = 1; did_divide(dividend, divisor, flow_controller); return; } const auto remainder = Int16(dividend % divisor); destination = uint32_t((uint32_t(remainder) << 16) | uint16_t(quotient)); status.overflow_flag = 0; status.zero_result = Status::FlagT(quotient); status.negative_flag = status.zero_result & 0x8000; did_divide(dividend, divisor, flow_controller); } template void move(IntT source, IntT &destination, Status &status) { destination = source; status.zero_result = Status::FlagT(source); status.negative_flag = status.zero_result & top_bit(); status.overflow_flag = status.carry_flag = 0; } template void negative(IntT &source, Status &status) { const IntT result = -source - (is_extend && status.extend_flag ? 1 : 0); if constexpr (is_extend) { status.zero_result |= result; } else { status.zero_result = result; } status.extend_flag = status.carry_flag = result; // i.e. any value other than 0 will result in carry. status.negative_flag = result & top_bit(); status.overflow_flag = Primitive::overflow(source, IntT(0), result); source = result; } } template < Model model, typename FlowController, Operation operation = Operation::Undefined > void perform(Preinstruction instruction, CPU::SlicedInt32 &src, CPU::SlicedInt32 &dest, Status &status, FlowController &flow_controller) { switch((operation != Operation::Undefined) ? operation : instruction.operation) { /* ABCD adds the lowest bytes from the source and destination using BCD arithmetic, obeying the extend flag. */ case Operation::ABCD: { // Pull out the two halves, for simplicity. const uint8_t source = src.b; const uint8_t destination = dest.b; const int extend = (status.extend_flag ? 1 : 0); // Perform the BCD add by evaluating the two nibbles separately. const int unadjusted_result = destination + source + extend; int result = (destination & 0xf) + (source & 0xf) + extend; result += (destination & 0xf0) + (source & 0xf0) + (((9 - result) >> 4) & 0x06); // i.e. ((result > 0x09) ? 0x06 : 0x00) result += ((0x9f - result) >> 4) & 0x60; // i.e. ((result > 0x9f) ? 0x60 : 0x00) // Set all flags essentially as if this were normal addition. status.zero_result |= result & 0xff; status.extend_flag = status.carry_flag = uint_fast32_t(result & ~0xff); status.negative_flag = result & 0x80; status.overflow_flag = ~unadjusted_result & result & 0x80; // Store the result. dest.b = uint8_t(result); } break; // ADD and ADDA add two quantities, the latter sign extending and without setting any flags; // ADDQ and SUBQ act as ADD and SUB, but taking the second argument from the instruction code. case Operation::ADDb: Primitive::add_sub(src.b, dest.b, status); break; case Operation::SUBb: Primitive::add_sub(src.b, dest.b, status); break; case Operation::ADDXb: Primitive::add_sub(src.b, dest.b, status); break; case Operation::SUBXb: Primitive::add_sub(src.b, dest.b, status); break; case Operation::ADDw: Primitive::add_sub(src.w, dest.w, status); break; case Operation::SUBw: Primitive::add_sub(src.w, dest.w, status); break; case Operation::ADDXw: Primitive::add_sub(src.w, dest.w, status); break; case Operation::SUBXw: Primitive::add_sub(src.w, dest.w, status); break; case Operation::ADDl: Primitive::add_sub(src.l, dest.l, status); break; case Operation::SUBl: Primitive::add_sub(src.l, dest.l, status); break; case Operation::ADDXl: Primitive::add_sub(src.l, dest.l, status); break; case Operation::SUBXl: Primitive::add_sub(src.l, dest.l, status); break; case Operation::ADDAw: dest.l += u_extend16(src.w); break; case Operation::ADDAl: dest.l += src.l; break; case Operation::SUBAw: dest.l -= u_extend16(src.w); break; case Operation::SUBAl: dest.l -= src.l; break; // BTST/BCLR/etc: modulo for the mask depends on whether memory or a data register is the target. case Operation::BTST: status.zero_result = dest.l & (1 << Primitive::mask_bit(instruction, src.l)); break; case Operation::BCLR: Primitive::bit_manipulate(instruction, src.l, dest.l, status, flow_controller); break; case Operation::BCHG: Primitive::bit_manipulate(instruction, src.l, dest.l, status, flow_controller); break; case Operation::BSET: Primitive::bit_manipulate(instruction, src.l, dest.l, status, flow_controller); break; case Operation::Bccb: flow_controller.template complete_bcc( status.evaluate_condition(instruction.condition()), int8_t(src.b)); break; case Operation::Bccw: flow_controller.template complete_bcc( status.evaluate_condition(instruction.condition()), int16_t(src.w)); break; case Operation::Bccl: flow_controller.template complete_bcc( status.evaluate_condition(instruction.condition()), int32_t(src.l)); break; case Operation::BSRb: flow_controller.bsr(uint32_t(int8_t(src.b))); break; case Operation::BSRw: flow_controller.bsr(uint32_t(int16_t(src.w))); break; case Operation::BSRl: flow_controller.bsr(src.l); break; case Operation::DBcc: { const bool matched_condition = status.evaluate_condition(instruction.condition()); bool overflowed = false; // Classify the dbcc. if(!matched_condition) { -- src.w; overflowed = src.w == 0xffff; } // Take the branch. flow_controller.complete_dbcc( matched_condition, overflowed, int16_t(dest.w)); } break; case Operation::Scc: { const bool condition = status.evaluate_condition(instruction.condition()); src.b = condition ? 0xff : 0x00; flow_controller.did_scc(condition); } break; /* CLRs: store 0 to the destination, set the zero flag, and clear negative, overflow and carry. */ case Operation::CLRb: Primitive::clear(src.b, status); break; case Operation::CLRw: Primitive::clear(src.w, status); break; case Operation::CLRl: Primitive::clear(src.l, status); break; /* CMP.b, CMP.l and CMP.w: sets the condition flags (other than extend) based on a subtraction of the source from the destination; the result of the subtraction is not stored. */ case Operation::CMPb: Primitive::compare(src.b, dest.b, status); break; case Operation::CMPw: Primitive::compare(src.w, dest.w, status); break; case Operation::CMPAw: Primitive::compare(u_extend16(src.w), dest.l, status); break; case Operation::CMPAl: case Operation::CMPl: Primitive::compare(src.l, dest.l, status); break; // JMP: copies EA(0) to the program counter. case Operation::JMP: flow_controller.jmp(src.l); break; // JSR: jump to EA(0), pushing the current PC to the stack. case Operation::JSR: flow_controller.jsr(src.l); break; /* MOVE.b, MOVE.l and MOVE.w: move the least significant byte or word, or the entire long word, and set negative, zero, overflow and carry as appropriate. */ case Operation::MOVEb: Primitive::move(src.b, dest.b, status); break; case Operation::MOVEw: Primitive::move(src.w, dest.w, status); break; case Operation::MOVEl: Primitive::move(src.l, dest.l, status); break; /* MOVEA.l: move the entire long word; MOVEA.w: move the least significant word and sign extend it. Neither sets any flags. */ case Operation::MOVEAw: dest.l = u_extend16(src.w); break; case Operation::MOVEAl: dest.l = src.l; break; case Operation::LEA: dest.l = src.l; break; case Operation::PEA: flow_controller.pea(src.l); break; /* Status word moves and manipulations. */ case Operation::MOVEtoSR: status.set_status(src.w); flow_controller.did_update_status(); break; case Operation::MOVEfromSR: src.w = status.status(); break; case Operation::MOVEtoCCR: status.set_ccr(src.w); break; case Operation::MOVEtoUSP: flow_controller.move_to_usp(src.l); break; case Operation::MOVEfromUSP: flow_controller.move_from_usp(src.l); break; case Operation::EXTbtow: src.w = uint16_t(int8_t(src.b)); status.overflow_flag = status.carry_flag = 0; status.zero_result = src.w; status.negative_flag = status.zero_result & 0x8000; break; case Operation::EXTwtol: src.l = u_extend16(src.w); status.overflow_flag = status.carry_flag = 0; status.zero_result = src.l; status.negative_flag = status.zero_result & 0x80000000; break; case Operation::ANDItoSR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; case Operation::EORItoSR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; case Operation::ORItoSR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; case Operation::ANDItoCCR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; case Operation::EORItoCCR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; case Operation::ORItoCCR: Primitive::apply_sr_ccr(src.w, status, flow_controller); break; /* Multiplications. */ case Operation::MULU: Primitive::multiply(src.w, dest.l, status, flow_controller); break; case Operation::MULS: Primitive::multiply(src.w, dest.l, status, flow_controller); break; /* Divisions. */ case Operation::DIVU: Primitive::divide(src.w, dest.l, status, flow_controller); break; case Operation::DIVS: Primitive::divide(src.w, dest.l, status, flow_controller); break; // TRAP, which is a nicer form of ILLEGAL. case Operation::TRAP: flow_controller.template raise_exception(int(src.l + Exception::TrapBase)); break; case Operation::TRAPV: { if(status.overflow_flag) { flow_controller.template raise_exception(Exception::TRAPV); } } break; case Operation::CHK: { const bool is_under = s_extend16(dest.w) < 0; const bool is_over = s_extend16(dest.w) > s_extend16(src.w); status.overflow_flag = status.carry_flag = 0; status.zero_result = dest.w; // Test applied for N: // // if Dn < 0, set negative flag; // otherwise, if Dn > , reset negative flag. if(is_over) status.negative_flag = 0; if(is_under) status.negative_flag = 1; // No exception is the default course of action; deviate only if an // exception is necessary. flow_controller.did_chk(is_under, is_over); if(is_under || is_over) { flow_controller.template raise_exception(Exception::CHK); } } break; /* NEGs: negatives the destination, setting the zero, negative, overflow and carry flags appropriate, and extend. NB: since the same logic as SUB is used to calculate overflow, and SUB calculates `destination - source`, the NEGs deliberately label 'source' and 'destination' differently from Motorola. */ case Operation::NEGb: Primitive::negative(src.b, status); break; case Operation::NEGw: Primitive::negative(src.w, status); break; case Operation::NEGl: Primitive::negative(src.l, status); break; /* NEGXs: NEG, with extend. */ case Operation::NEGXb: Primitive::negative(src.b, status); break; case Operation::NEGXw: Primitive::negative(src.w, status); break; case Operation::NEGXl: Primitive::negative(src.l, status); break; /* The no-op. */ case Operation::NOP: break; /* LINK and UNLINK help with stack frames, allowing a certain amount of stack space to be allocated or deallocated. */ case Operation::LINKw: flow_controller.link(instruction, uint32_t(int16_t(dest.w))); break; case Operation::UNLINK: flow_controller.unlink(src.l); break; /* TAS: sets zero and negative depending on the current value of the destination, and sets the high bit, using a specialised atomic bus cycle. */ case Operation::TAS: flow_controller.tas(instruction, src.l); break; /* Bitwise operators: AND, OR and EOR. All three clear the overflow and carry flags, and set zero and negative appropriately. */ #define op_and(x, y) x &= y #define op_or(x, y) x |= y #define op_eor(x, y) x ^= y #define bitwise(source, dest, sign_mask, operator) \ operator(dest, source); \ status.overflow_flag = status.carry_flag = 0; \ status.zero_result = dest; \ status.negative_flag = dest & sign_mask; #define andx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_and) #define eorx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_eor) #define orx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_or) #define op_bwl(name, op) \ case Operation::name##b: op(src.b, dest.b, 0x80); break; \ case Operation::name##w: op(src.w, dest.w, 0x8000); break; \ case Operation::name##l: op(src.l, dest.l, 0x80000000); break; op_bwl(AND, andx); op_bwl(EOR, eorx); op_bwl(OR, orx); #undef op_bwl #undef orx #undef eorx #undef andx #undef bitwise #undef op_eor #undef op_or #undef op_and // NOTs: take the logical inverse, affecting the negative and zero flags. case Operation::NOTb: src.b ^= 0xff; status.zero_result = src.b; status.negative_flag = status.zero_result & 0x80; status.overflow_flag = status.carry_flag = 0; break; case Operation::NOTw: src.w ^= 0xffff; status.zero_result = src.w; status.negative_flag = status.zero_result & 0x8000; status.overflow_flag = status.carry_flag = 0; break; case Operation::NOTl: src.l ^= 0xffffffff; status.zero_result = src.l; status.negative_flag = status.zero_result & 0x80000000; status.overflow_flag = status.carry_flag = 0; break; #define sbcd(d) \ const int extend = (status.extend_flag ? 1 : 0); \ const int unadjusted_result = destination - source - extend; \ \ const int top = (destination & 0xf0) - (source & 0xf0) - (0x60 & (unadjusted_result >> 4)); \ \ int result = (destination & 0xf) - (source & 0xf) - extend; \ const int low_adjustment = 0x06 & (result >> 4); \ status.extend_flag = status.carry_flag = Status::FlagT( \ (unadjusted_result - low_adjustment) & 0x300 \ ); \ result = result + top - low_adjustment; \ \ /* Store the result. */ \ d = uint8_t(result); \ \ /* Set all remaining flags essentially as if this were normal subtraction. */ \ status.zero_result |= d; \ status.negative_flag = result & 0x80; \ status.overflow_flag = unadjusted_result & ~result & 0x80; \ /* SBCD subtracts the lowest byte of the source from that of the destination using BCD arithmetic, obeying the extend flag. */ case Operation::SBCD: { const uint8_t source = src.b; const uint8_t destination = dest.b; sbcd(dest.b); } break; /* NBCD is like SBCD except that the result is 0 - source rather than destination - source. */ case Operation::NBCD: { const uint8_t source = src.b; const uint8_t destination = 0; sbcd(src.b); } break; #undef sbcd // EXG and SWAP exchange/swap words or long words. case Operation::EXG: { const auto temporary = src.l; src.l = dest.l; dest.l = temporary; } break; case Operation::SWAP: { uint16_t *const words = reinterpret_cast(&src.l); const auto temporary = words[0]; words[0] = words[1]; words[1] = temporary; status.zero_result = src.l; status.negative_flag = temporary & 0x8000; status.overflow_flag = status.carry_flag = 0; } break; /* Shifts and rotates. */ #define set_neg_zero(v, m) \ status.zero_result = Status::FlagT(v); \ status.negative_flag = status.zero_result & Status::FlagT(m); #define set_neg_zero_overflow(v, m) \ set_neg_zero(v, m); \ status.overflow_flag = (Status::FlagT(value) ^ status.zero_result) & Status::FlagT(m); #define decode_shift_count(type) \ int shift_count = src.l & 63; \ flow_controller.template did_shift(shift_count); #define set_flags_w(t) set_flags(src.w, 0x8000, t) #define asl(destination, size) {\ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = status.overflow_flag = 0; \ } else { \ destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \ status.extend_flag = status.carry_flag = Status::FlagT(value) & Status::FlagT( (1u << (size - 1)) >> (shift_count - 1) ); \ \ if(shift_count >= size) status.overflow_flag = value && (value != decltype(value)(-1)); \ else { \ const auto mask = decltype(destination)(0xffffffff << (size - shift_count)); \ status.overflow_flag = mask & value && ((mask & value) != mask); \ } \ } \ \ set_neg_zero(destination, 1 << (size - 1)); \ } case Operation::ASLm: { const auto value = src.w; src.w = uint16_t(value << 1); status.extend_flag = status.carry_flag = value & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::ASLb: asl(dest.b, 8); break; case Operation::ASLw: asl(dest.w, 16); break; case Operation::ASLl: asl(dest.l, 32); break; #define asr(destination, size) {\ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = 0; \ } else { \ destination = (shift_count < size) ? \ decltype(destination)(\ (value >> shift_count) | \ ((value & decltype(value)(1 << (size - 1)) ? 0xffffffff : 0x000000000) << (size - shift_count)) \ ) : \ decltype(destination)( \ (value & decltype(value)(1 << (size - 1))) ? 0xffffffff : 0x000000000 \ ); \ status.extend_flag = status.carry_flag = Status::FlagT(value) & Status::FlagT(1 << (shift_count - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ASRm: { const auto value = src.w; src.w = (value&0x8000) | (value >> 1); status.extend_flag = status.carry_flag = value & 1; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::ASRb: asr(dest.b, 8); break; case Operation::ASRw: asr(dest.w, 16); break; case Operation::ASRl: asr(dest.l, 32); break; #undef set_neg_zero_overflow #define set_neg_zero_overflow(v, m) \ set_neg_zero(v, m); \ status.overflow_flag = 0; #undef set_flags #define set_flags(v, m, t) \ status.zero_result = v; \ status.negative_flag = status.zero_result & (m); \ status.overflow_flag = 0; \ status.carry_flag = value & (t); #define lsl(destination, size) {\ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = 0; \ } else { \ destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \ status.extend_flag = status.carry_flag = Status::FlagT(value) & Status::FlagT( (1u << (size - 1)) >> (shift_count - 1) ); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::LSLm: { const auto value = src.w; src.w = uint16_t(value << 1); status.extend_flag = status.carry_flag = value & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::LSLb: lsl(dest.b, 8); break; case Operation::LSLw: lsl(dest.w, 16); break; case Operation::LSLl: lsl(dest.l, 32); break; #define lsr(destination, size) {\ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = 0; \ } else { \ destination = (shift_count < size) ? (value >> shift_count) : 0; \ status.extend_flag = status.carry_flag = value & Status::FlagT(1 << (shift_count - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::LSRm: { const auto value = src.w; src.w = value >> 1; status.extend_flag = status.carry_flag = value & 1; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::LSRb: lsr(dest.b, 8); break; case Operation::LSRw: lsr(dest.w, 16); break; case Operation::LSRl: lsr(dest.l, 32); break; #define rol(destination, size) { \ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = 0; \ } else { \ shift_count &= (size - 1); \ destination = decltype(destination)( \ (value << shift_count) | \ (value >> (size - shift_count)) \ ); \ status.carry_flag = Status::FlagT(destination & 1); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROLm: { const auto value = src.w; src.w = uint16_t((value << 1) | (value >> 15)); status.carry_flag = src.w & 1; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::ROLb: rol(dest.b, 8); break; case Operation::ROLw: rol(dest.w, 16); break; case Operation::ROLl: rol(dest.l, 32); break; #define ror(destination, size) { \ decode_shift_count(decltype(destination)); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag = 0; \ } else { \ shift_count &= (size - 1); \ destination = decltype(destination)(\ (value >> shift_count) | \ (value << (size - shift_count)) \ );\ status.carry_flag = destination & Status::FlagT(1 << (size - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::RORm: { const auto value = src.w; src.w = uint16_t((value >> 1) | (value << 15)); status.carry_flag = src.w & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; case Operation::RORb: ror(dest.b, 8); break; case Operation::RORw: ror(dest.w, 16); break; case Operation::RORl: ror(dest.l, 32); break; #define roxl(destination, size) { \ decode_shift_count(decltype(destination)); \ \ shift_count %= (size + 1); \ uint64_t compound = uint64_t(destination) | (status.extend_flag ? (1ull << size) : 0); \ compound = \ (compound << shift_count) | \ (compound >> (size + 1 - shift_count)); \ status.carry_flag = status.extend_flag = Status::FlagT((compound >> size) & 1); \ destination = decltype(destination)(compound); \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROXLm: { const auto value = src.w; src.w = uint16_t((value << 1) | (status.extend_flag ? 0x0001 : 0x0000)); status.extend_flag = value & 0x8000; set_flags_w(0x8000); } break; case Operation::ROXLb: roxl(dest.b, 8); break; case Operation::ROXLw: roxl(dest.w, 16); break; case Operation::ROXLl: roxl(dest.l, 32); break; #define roxr(destination, size) { \ decode_shift_count(decltype(destination)); \ \ shift_count %= (size + 1); \ uint64_t compound = uint64_t(destination) | (status.extend_flag ? (1ull << size) : 0); \ compound = \ (compound >> shift_count) | \ (compound << (size + 1 - shift_count)); \ status.carry_flag = status.extend_flag = Status::FlagT((compound >> size) & 1); \ destination = decltype(destination)(compound); \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROXRm: { const auto value = src.w; src.w = (value >> 1) | (status.extend_flag ? 0x8000 : 0x0000); status.extend_flag = value & 0x0001; set_flags_w(0x0001); } break; case Operation::ROXRb: roxr(dest.b, 8); break; case Operation::ROXRw: roxr(dest.w, 16); break; case Operation::ROXRl: roxr(dest.l, 32); break; #undef roxr #undef roxl #undef ror #undef rol #undef asr #undef lsr #undef lsl #undef asl #undef set_flags #undef decode_shift_count #undef set_flags_w #undef set_neg_zero_overflow #undef set_neg_zero case Operation::MOVEPl: flow_controller.template movep(instruction, src.l, dest.l); break; case Operation::MOVEPw: flow_controller.template movep(instruction, src.l, dest.l); break; case Operation::MOVEMtoRl: flow_controller.template movem_toR(instruction, src.l, dest.l); break; case Operation::MOVEMtoMl: flow_controller.template movem_toM(instruction, src.l, dest.l); break; case Operation::MOVEMtoRw: flow_controller.template movem_toR(instruction, src.l, dest.l); break; case Operation::MOVEMtoMw: flow_controller.template movem_toM(instruction, src.l, dest.l); break; /* RTE and RTR share an implementation. */ case Operation::RTR: flow_controller.rtr(); break; case Operation::RTE: flow_controller.rte(); break; case Operation::RTS: flow_controller.rts(); break; /* TSTs: compare to zero. */ case Operation::TSTb: status.carry_flag = status.overflow_flag = 0; status.zero_result = src.b; status.negative_flag = status.zero_result & 0x80; break; case Operation::TSTw: status.carry_flag = status.overflow_flag = 0; status.zero_result = src.w; status.negative_flag = status.zero_result & 0x8000; break; case Operation::TSTl: status.carry_flag = status.overflow_flag = 0; status.zero_result = src.l; status.negative_flag = status.zero_result & 0x80000000; break; case Operation::STOP: status.set_status(src.w); flow_controller.did_update_status(); flow_controller.stop(); break; case Operation::RESET: flow_controller.reset(); break; /* Development period debugging. */ default: assert(false); break; } #undef u_extend16 #undef s_extend16 } } } #endif /* InstructionSets_M68k_PerformImplementation_h */