// // Z80Implementation.hpp // Clock Signal // // Created by Thomas Harte on 01/09/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // template < class T, bool uses_bus_request, bool uses_wait_line> Processor ::Processor(T &bus_handler) : bus_handler_(bus_handler) { install_default_instruction_set(); } template < class T, bool uses_bus_request, bool uses_wait_line> void Processor ::run_for(const HalfCycles cycles) { #define advance_operation() \ pc_increment_ = 1; \ if(last_request_status_) { \ halt_mask_ = 0xff; \ if(last_request_status_ & (Interrupt::PowerOn | Interrupt::Reset)) { \ request_status_ &= ~Interrupt::PowerOn; \ scheduled_program_counter_ = reset_program_.data(); \ } else if(last_request_status_ & Interrupt::NMI) { \ request_status_ &= ~Interrupt::NMI; \ scheduled_program_counter_ = nmi_program_.data(); \ } else if(last_request_status_ & Interrupt::IRQ) { \ scheduled_program_counter_ = irq_program_[interrupt_mode_].data(); \ } \ } else { \ current_instruction_page_ = &base_page_; \ scheduled_program_counter_ = base_page_.fetch_decode_execute_data; \ } number_of_cycles_ += cycles; if(!scheduled_program_counter_) { advance_operation(); } while(1) { do_bus_acknowledge: while(uses_bus_request && bus_request_line_) { static PartialMachineCycle bus_acknowledge_cycle = {PartialMachineCycle::BusAcknowledge, HalfCycles(2), nullptr, nullptr, false}; number_of_cycles_ -= bus_handler_.perform_machine_cycle(bus_acknowledge_cycle) + HalfCycles(1); if(!number_of_cycles_) { bus_handler_.flush(); return; } } while(true) { const MicroOp *operation = scheduled_program_counter_; scheduled_program_counter_++; #define set_parity(v) \ parity_overflow_result_ = (uint8_t)(v^1);\ parity_overflow_result_ ^= parity_overflow_result_ >> 4;\ parity_overflow_result_ ^= parity_overflow_result_ << 2;\ parity_overflow_result_ ^= parity_overflow_result_ >> 1; switch(operation->type) { case MicroOp::BusOperation: if(number_of_cycles_ < operation->machine_cycle.length) { scheduled_program_counter_--; bus_handler_.flush(); return; } if(uses_wait_line && operation->machine_cycle.was_requested) { if(wait_line_) { scheduled_program_counter_--; } else { continue; } } number_of_cycles_ -= operation->machine_cycle.length; last_request_status_ = request_status_; number_of_cycles_ -= bus_handler_.perform_machine_cycle(operation->machine_cycle); if(uses_bus_request && bus_request_line_) goto do_bus_acknowledge; break; case MicroOp::MoveToNextProgram: advance_operation(); break; case MicroOp::DecodeOperation: refresh_addr_ = ir_; ir_.bytes.low = (ir_.bytes.low & 0x80) | ((ir_.bytes.low + current_instruction_page_->r_step) & 0x7f); pc_.full += pc_increment_ & (uint16_t)halt_mask_; scheduled_program_counter_ = current_instruction_page_->instructions[operation_ & halt_mask_]; break; case MicroOp::DecodeOperationNoRChange: refresh_addr_ = ir_; pc_.full += pc_increment_ & (uint16_t)halt_mask_; scheduled_program_counter_ = current_instruction_page_->instructions[operation_ & halt_mask_]; break; case MicroOp::Increment16: (*(uint16_t *)operation->source)++; break; case MicroOp::IncrementPC: pc_.full += pc_increment_; break; case MicroOp::Decrement16: (*(uint16_t *)operation->source)--; break; case MicroOp::Move8: *(uint8_t *)operation->destination = *(uint8_t *)operation->source; break; case MicroOp::Move16: *(uint16_t *)operation->destination = *(uint16_t *)operation->source; break; case MicroOp::AssembleAF: temp16_.bytes.high = a_; temp16_.bytes.low = get_flags(); break; case MicroOp::DisassembleAF: a_ = temp16_.bytes.high; set_flags(temp16_.bytes.low); break; #pragma mark - Logical #define set_logical_flags(hf) \ sign_result_ = zero_result_ = bit53_result_ = a_; \ set_parity(a_); \ half_carry_result_ = hf; \ subtract_flag_ = 0; \ carry_result_ = 0; case MicroOp::And: a_ &= *(uint8_t *)operation->source; set_logical_flags(Flag::HalfCarry); break; case MicroOp::Or: a_ |= *(uint8_t *)operation->source; set_logical_flags(0); break; case MicroOp::Xor: a_ ^= *(uint8_t *)operation->source; set_logical_flags(0); break; #undef set_logical_flags case MicroOp::CPL: a_ ^= 0xff; subtract_flag_ = Flag::Subtract; half_carry_result_ = Flag::HalfCarry; bit53_result_ = a_; break; case MicroOp::CCF: half_carry_result_ = (uint8_t)(carry_result_ << 4); carry_result_ ^= Flag::Carry; subtract_flag_ = 0; bit53_result_ = a_; break; case MicroOp::SCF: carry_result_ = Flag::Carry; half_carry_result_ = 0; subtract_flag_ = 0; bit53_result_ = a_; break; #pragma mark - Flow control case MicroOp::DJNZ: bc_.bytes.high--; if(!bc_.bytes.high) { advance_operation(); } break; case MicroOp::CalculateRSTDestination: memptr_.full = operation_ & 0x38; break; #pragma mark - 8-bit arithmetic #define set_arithmetic_flags(sub, b53) \ sign_result_ = zero_result_ = (uint8_t)result; \ carry_result_ = (uint8_t)(result >> 8); \ half_carry_result_ = (uint8_t)half_result; \ parity_overflow_result_ = (uint8_t)(overflow >> 5); \ subtract_flag_ = sub; \ bit53_result_ = (uint8_t)b53; case MicroOp::CP8: { uint8_t value = *(uint8_t *)operation->source; int result = a_ - value; int half_result = (a_&0xf) - (value&0xf); // overflow for a subtraction is when the signs were originally // different and the result is different again int overflow = (value^a_) & (result^a_); // the 5 and 3 flags come from the operand, atypically set_arithmetic_flags(Flag::Subtract, value); } break; case MicroOp::SUB8: { uint8_t value = *(uint8_t *)operation->source; int result = a_ - value; int half_result = (a_&0xf) - (value&0xf); // overflow for a subtraction is when the signs were originally // different and the result is different again int overflow = (value^a_) & (result^a_); a_ = (uint8_t)result; set_arithmetic_flags(Flag::Subtract, result); } break; case MicroOp::SBC8: { uint8_t value = *(uint8_t *)operation->source; int result = a_ - value - (carry_result_ & Flag::Carry); int half_result = (a_&0xf) - (value&0xf) - (carry_result_ & Flag::Carry); // overflow for a subtraction is when the signs were originally // different and the result is different again int overflow = (value^a_) & (result^a_); a_ = (uint8_t)result; set_arithmetic_flags(Flag::Subtract, result); } break; case MicroOp::ADD8: { uint8_t value = *(uint8_t *)operation->source; int result = a_ + value; int half_result = (a_&0xf) + (value&0xf); // overflow for addition is when the signs were originally // the same and the result is different int overflow = ~(value^a_) & (result^a_); a_ = (uint8_t)result; set_arithmetic_flags(0, result); } break; case MicroOp::ADC8: { uint8_t value = *(uint8_t *)operation->source; int result = a_ + value + (carry_result_ & Flag::Carry); int half_result = (a_&0xf) + (value&0xf) + (carry_result_ & Flag::Carry); // overflow for addition is when the signs were originally // the same and the result is different int overflow = ~(value^a_) & (result^a_); a_ = (uint8_t)result; set_arithmetic_flags(0, result); } break; #undef set_arithmetic_flags case MicroOp::NEG: { int overflow = (a_ == 0x80); int result = -a_; int halfResult = -(a_&0xf); a_ = (uint8_t)result; bit53_result_ = sign_result_ = zero_result_ = a_; parity_overflow_result_ = overflow ? Flag::Overflow : 0; subtract_flag_ = Flag::Subtract; carry_result_ = (uint8_t)(result >> 8); half_carry_result_ = (uint8_t)halfResult; } break; case MicroOp::Increment8: { uint8_t value = *(uint8_t *)operation->source; int result = value + 1; // with an increment, overflow occurs if the sign changes from // positive to negative int overflow = (value ^ result) & ~value; int half_result = (value&0xf) + 1; *(uint8_t *)operation->source = (uint8_t)result; // sign, zero and 5 & 3 are set directly from the result bit53_result_ = sign_result_ = zero_result_ = (uint8_t)result; half_carry_result_ = (uint8_t)half_result; parity_overflow_result_ = (uint8_t)(overflow >> 5); subtract_flag_ = 0; } break; case MicroOp::Decrement8: { uint8_t value = *(uint8_t *)operation->source; int result = value - 1; // with a decrement, overflow occurs if the sign changes from // negative to positive int overflow = (value ^ result) & value; int half_result = (value&0xf) - 1; *(uint8_t *)operation->source = (uint8_t)result; // sign, zero and 5 & 3 are set directly from the result bit53_result_ = sign_result_ = zero_result_ = (uint8_t)result; half_carry_result_ = (uint8_t)half_result; parity_overflow_result_ = (uint8_t)(overflow >> 5); subtract_flag_ = Flag::Subtract; } break; case MicroOp::DAA: { int lowNibble = a_ & 0xf; int highNibble = a_ >> 4; int amountToAdd = 0; if(carry_result_ & Flag::Carry) { amountToAdd = (lowNibble > 0x9 || (half_carry_result_ & Flag::HalfCarry)) ? 0x66 : 0x60; } else { if(half_carry_result_ & Flag::HalfCarry) { if(lowNibble > 0x9) amountToAdd = (highNibble > 0x8) ? 0x66 : 0x06; else amountToAdd = (highNibble > 0x9) ? 0x66 : 0x06; } else { if(lowNibble > 0x9) amountToAdd = (highNibble > 0x8) ? 0x66 : 0x06; else amountToAdd = (highNibble > 0x9) ? 0x60 : 0x00; } } if(!(carry_result_ & Flag::Carry)) { if(lowNibble > 0x9) { if(highNibble > 0x8) carry_result_ = Flag::Carry; } else { if(highNibble > 0x9) carry_result_ = Flag::Carry; } } if(subtract_flag_) { a_ -= amountToAdd; half_carry_result_ = ((half_carry_result_ & Flag::HalfCarry) && lowNibble < 0x6) ? Flag::HalfCarry : 0; } else { a_ += amountToAdd; half_carry_result_ = (lowNibble > 0x9) ? Flag::HalfCarry : 0; } sign_result_ = zero_result_ = bit53_result_ = a_; set_parity(a_); } break; #pragma mark - 16-bit arithmetic case MicroOp::ADD16: { memptr_.full = *(uint16_t *)operation->destination; uint16_t sourceValue = *(uint16_t *)operation->source; uint16_t destinationValue = memptr_.full; int result = sourceValue + destinationValue; int halfResult = (sourceValue&0xfff) + (destinationValue&0xfff); bit53_result_ = (uint8_t)(result >> 8); carry_result_ = (uint8_t)(result >> 16); half_carry_result_ = (uint8_t)(halfResult >> 8); subtract_flag_ = 0; *(uint16_t *)operation->destination = (uint16_t)result; memptr_.full++; } break; case MicroOp::ADC16: { memptr_.full = *(uint16_t *)operation->destination; uint16_t sourceValue = *(uint16_t *)operation->source; uint16_t destinationValue = memptr_.full; int result = sourceValue + destinationValue + (carry_result_ & Flag::Carry); int halfResult = (sourceValue&0xfff) + (destinationValue&0xfff) + (carry_result_ & Flag::Carry); int overflow = (result ^ destinationValue) & ~(destinationValue ^ sourceValue); bit53_result_ = sign_result_ = (uint8_t)(result >> 8); zero_result_ = (uint8_t)(result | sign_result_); subtract_flag_ = 0; carry_result_ = (uint8_t)(result >> 16); half_carry_result_ = (uint8_t)(halfResult >> 8); parity_overflow_result_ = (uint8_t)(overflow >> 13); *(uint16_t *)operation->destination = (uint16_t)result; memptr_.full++; } break; case MicroOp::SBC16: { memptr_.full = *(uint16_t *)operation->destination; uint16_t sourceValue = *(uint16_t *)operation->source; uint16_t destinationValue = memptr_.full; int result = destinationValue - sourceValue - (carry_result_ & Flag::Carry); int halfResult = (destinationValue&0xfff) - (sourceValue&0xfff) - (carry_result_ & Flag::Carry); // subtraction, so parity rules are: // signs of operands were different, // sign of result is different int overflow = (result ^ destinationValue) & (sourceValue ^ destinationValue); bit53_result_ = sign_result_ = (uint8_t)(result >> 8); zero_result_ = (uint8_t)(result | sign_result_); subtract_flag_ = Flag::Subtract; carry_result_ = (uint8_t)(result >> 16); half_carry_result_ = (uint8_t)(halfResult >> 8); parity_overflow_result_ = (uint8_t)(overflow >> 13); *(uint16_t *)operation->destination = (uint16_t)result; memptr_.full++; } break; #pragma mark - Conditionals #define decline_conditional() \ if(operation->source) { \ scheduled_program_counter_ = (MicroOp *)operation->source; \ } else { \ advance_operation(); \ } case MicroOp::TestNZ: if(!zero_result_) { decline_conditional(); } break; case MicroOp::TestZ: if(zero_result_) { decline_conditional(); } break; case MicroOp::TestNC: if(carry_result_ & Flag::Carry) { decline_conditional(); } break; case MicroOp::TestC: if(!(carry_result_ & Flag::Carry)) { decline_conditional(); } break; case MicroOp::TestPO: if(parity_overflow_result_ & Flag::Parity) { decline_conditional(); } break; case MicroOp::TestPE: if(!(parity_overflow_result_ & Flag::Parity)) { decline_conditional(); } break; case MicroOp::TestP: if(sign_result_ & Flag::Sign) { decline_conditional(); } break; case MicroOp::TestM: if(!(sign_result_ & Flag::Sign)) { decline_conditional(); } break; #undef decline_conditional #pragma mark - Exchange #define swap(a, b) temp = a.full; a.full = b.full; b.full = temp; case MicroOp::ExDEHL: { uint16_t temp; swap(de_, hl_); } break; case MicroOp::ExAFAFDash: { uint8_t a = a_; uint8_t f = get_flags(); set_flags(afDash_.bytes.low); a_ = afDash_.bytes.high; afDash_.bytes.high = a; afDash_.bytes.low = f; } break; case MicroOp::EXX: { uint16_t temp; swap(de_, deDash_); swap(bc_, bcDash_); swap(hl_, hlDash_); } break; #undef swap #pragma mark - Repetition #define REPEAT(test) \ if(test) { \ pc_.full -= 2; \ } else { \ advance_operation(); \ } #define LDxR_STEP(dir) \ bc_.full--; \ de_.full += dir; \ hl_.full += dir; \ uint8_t sum = a_ + temp8_; \ bit53_result_ = (uint8_t)((sum&0x8) | ((sum & 0x02) << 4)); \ subtract_flag_ = 0; \ half_carry_result_ = 0; \ parity_overflow_result_ = bc_.full ? Flag::Parity : 0; case MicroOp::LDDR: { LDxR_STEP(-1); REPEAT(bc_.full); } break; case MicroOp::LDIR: { LDxR_STEP(1); REPEAT(bc_.full); } break; case MicroOp::LDD: { LDxR_STEP(-1); } break; case MicroOp::LDI: { LDxR_STEP(1); } break; #undef LDxR_STEP #define CPxR_STEP(dir) \ hl_.full += dir; \ bc_.full--; \ \ uint8_t result = a_ - temp8_; \ uint8_t halfResult = (a_&0xf) - (temp8_&0xf); \ \ parity_overflow_result_ = bc_.full ? Flag::Parity : 0; \ half_carry_result_ = halfResult; \ subtract_flag_ = Flag::Subtract; \ sign_result_ = zero_result_ = result; \ \ result -= (halfResult >> 4)&1; \ bit53_result_ = (uint8_t)((result&0x8) | ((result&0x2) << 4)); \ case MicroOp::CPDR: { CPxR_STEP(-1); REPEAT(bc_.full && sign_result_); } break; case MicroOp::CPIR: { CPxR_STEP(1); REPEAT(bc_.full && sign_result_); } break; case MicroOp::CPD: { memptr_.full--; CPxR_STEP(-1); } break; case MicroOp::CPI: { memptr_.full++; CPxR_STEP(1); } break; #undef CPxR_STEP #define INxR_STEP(dir) \ bc_.bytes.high--; \ hl_.full += dir; \ \ sign_result_ = zero_result_ = bit53_result_ = bc_.bytes.high; \ subtract_flag_ = (temp8_ >> 6) & Flag::Subtract; \ \ int next_bc = bc_.bytes.low + dir; \ int summation = temp8_ + (next_bc&0xff); \ \ if(summation > 0xff) { \ carry_result_ = Flag::Carry; \ half_carry_result_ = Flag::HalfCarry; \ } else { \ carry_result_ = 0; \ half_carry_result_ = 0; \ } \ \ summation = (summation&7) ^ bc_.bytes.high; \ set_parity(summation); case MicroOp::INDR: { INxR_STEP(-1); REPEAT(bc_.bytes.high); } break; case MicroOp::INIR: { INxR_STEP(1); REPEAT(bc_.bytes.high); } break; case MicroOp::IND: { memptr_.full = bc_.full - 1; INxR_STEP(-1); } break; case MicroOp::INI: { memptr_.full = bc_.full + 1; INxR_STEP(1); } break; #undef INxR_STEP #define OUTxR_STEP(dir) \ bc_.bytes.high--; \ hl_.full += dir; \ \ sign_result_ = zero_result_ = bit53_result_ = bc_.bytes.high; \ subtract_flag_ = (temp8_ >> 6) & Flag::Subtract; \ \ int summation = temp8_ + hl_.bytes.low; \ if(summation > 0xff) { \ carry_result_ = Flag::Carry; \ half_carry_result_ = Flag::HalfCarry; \ } else { \ carry_result_ = half_carry_result_ = 0; \ } \ \ summation = (summation&7) ^ bc_.bytes.high; \ set_parity(summation); case MicroOp::OUT_R: REPEAT(bc_.bytes.high); break; case MicroOp::OUTD: { OUTxR_STEP(-1); memptr_.full = bc_.full - 1; } break; case MicroOp::OUTI: { OUTxR_STEP(1); memptr_.full = bc_.full + 1; } break; #undef OUTxR_STEP #pragma mark - Bit Manipulation case MicroOp::BIT: { uint8_t result = *(uint8_t *)operation->source & (1 << ((operation_ >> 3)&7)); if(current_instruction_page_->is_indexed || ((operation_&0x08) == 7)) { bit53_result_ = memptr_.bytes.high; } else { bit53_result_ = *(uint8_t *)operation->source; } sign_result_ = zero_result_ = result; half_carry_result_ = Flag::HalfCarry; subtract_flag_ = 0; parity_overflow_result_ = result ? 0 : Flag::Parity; } break; case MicroOp::RES: *(uint8_t *)operation->source &= ~(1 << ((operation_ >> 3)&7)); break; case MicroOp::SET: *(uint8_t *)operation->source |= (1 << ((operation_ >> 3)&7)); break; #pragma mark - Rotation and shifting #define set_rotate_flags() \ bit53_result_ = a_; \ carry_result_ = new_carry; \ subtract_flag_ = half_carry_result_ = 0; case MicroOp::RLA: { uint8_t new_carry = a_ >> 7; a_ = (uint8_t)((a_ << 1) | (carry_result_ & Flag::Carry)); set_rotate_flags(); } break; case MicroOp::RRA: { uint8_t new_carry = a_ & 1; a_ = (uint8_t)((a_ >> 1) | (carry_result_ << 7)); set_rotate_flags(); } break; case MicroOp::RLCA: { uint8_t new_carry = a_ >> 7; a_ = (uint8_t)((a_ << 1) | new_carry); set_rotate_flags(); } break; case MicroOp::RRCA: { uint8_t new_carry = a_ & 1; a_ = (uint8_t)((a_ >> 1) | (new_carry << 7)); set_rotate_flags(); } break; #undef set_rotate_flags #define set_shift_flags() \ sign_result_ = zero_result_ = bit53_result_ = *(uint8_t *)operation->source; \ set_parity(sign_result_); \ half_carry_result_ = 0; \ subtract_flag_ = 0; case MicroOp::RLC: carry_result_ = *(uint8_t *)operation->source >> 7; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source << 1) | carry_result_); set_shift_flags(); break; case MicroOp::RRC: carry_result_ = *(uint8_t *)operation->source; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source >> 1) | (carry_result_ << 7)); set_shift_flags(); break; case MicroOp::RL: { uint8_t next_carry = *(uint8_t *)operation->source >> 7; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source << 1) | (carry_result_ & Flag::Carry)); carry_result_ = next_carry; set_shift_flags(); } break; case MicroOp::RR: { uint8_t next_carry = *(uint8_t *)operation->source; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source >> 1) | (carry_result_ << 7)); carry_result_ = next_carry; set_shift_flags(); } break; case MicroOp::SLA: carry_result_ = *(uint8_t *)operation->source >> 7; *(uint8_t *)operation->source = (uint8_t)(*(uint8_t *)operation->source << 1); set_shift_flags(); break; case MicroOp::SRA: carry_result_ = *(uint8_t *)operation->source; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source >> 1) | (*(uint8_t *)operation->source & 0x80)); set_shift_flags(); break; case MicroOp::SLL: carry_result_ = *(uint8_t *)operation->source >> 7; *(uint8_t *)operation->source = (uint8_t)(*(uint8_t *)operation->source << 1) | 1; set_shift_flags(); break; case MicroOp::SRL: carry_result_ = *(uint8_t *)operation->source; *(uint8_t *)operation->source = (uint8_t)((*(uint8_t *)operation->source >> 1)); set_shift_flags(); break; #undef set_shift_flags #define set_decimal_rotate_flags() \ subtract_flag_ = 0; \ half_carry_result_ = 0; \ set_parity(a_); \ bit53_result_ = zero_result_ = sign_result_ = a_; case MicroOp::RRD: { memptr_.full = hl_.full + 1; uint8_t low_nibble = a_ & 0xf; a_ = (a_ & 0xf0) | (temp8_ & 0xf); temp8_ = (uint8_t)((temp8_ >> 4) | (low_nibble << 4)); set_decimal_rotate_flags(); } break; case MicroOp::RLD: { memptr_.full = hl_.full + 1; uint8_t low_nibble = a_ & 0xf; a_ = (a_ & 0xf0) | (temp8_ >> 4); temp8_ = (uint8_t)((temp8_ << 4) | low_nibble); set_decimal_rotate_flags(); } break; #undef set_decimal_rotate_flags #pragma mark - Interrupt state case MicroOp::EI: iff1_ = iff2_ = true; if(irq_line_) request_status_ |= Interrupt::IRQ; break; case MicroOp::DI: iff1_ = iff2_ = false; request_status_ &= ~Interrupt::IRQ; break; case MicroOp::IM: switch(operation_ & 0x18) { case 0x00: interrupt_mode_ = 0; break; case 0x08: interrupt_mode_ = 0; break; // IM 0/1 case 0x10: interrupt_mode_ = 1; break; case 0x18: interrupt_mode_ = 2; break; } break; #pragma mark - Input case MicroOp::SetInFlags: subtract_flag_ = half_carry_result_ = 0; sign_result_ = zero_result_ = bit53_result_ = *(uint8_t *)operation->source; set_parity(sign_result_); break; case MicroOp::SetAFlags: subtract_flag_ = half_carry_result_ = 0; parity_overflow_result_ = iff2_ ? Flag::Parity : 0; sign_result_ = zero_result_ = bit53_result_ = a_; break; case MicroOp::SetZero: temp8_ = 0; break; #pragma mark - Special-case Flow case MicroOp::BeginIRQMode0: pc_increment_ = 0; // deliberate fallthrough case MicroOp::BeginIRQ: iff2_ = iff1_ = false; request_status_ &= ~Interrupt::IRQ; temp16_.full = 0x38; break; case MicroOp::BeginNMI: iff2_ = iff1_; iff1_ = false; request_status_ &= ~Interrupt::IRQ; break; case MicroOp::JumpTo66: pc_.full = 0x66; break; case MicroOp::RETN: iff1_ = iff2_; if(irq_line_ && iff1_) request_status_ |= Interrupt::IRQ; break; case MicroOp::HALT: halt_mask_ = 0x00; break; #pragma mark - Interrupt handling case MicroOp::Reset: iff1_ = iff2_ = false; interrupt_mode_ = 0; pc_.full = 0; sp_.full = 0xffff; a_ = 0xff; set_flags(0xff); ir_.full = 0; break; #pragma mark - Internal bookkeeping case MicroOp::SetInstructionPage: current_instruction_page_ = (InstructionPage *)operation->source; scheduled_program_counter_ = current_instruction_page_->fetch_decode_execute_data; break; case MicroOp::CalculateIndexAddress: memptr_.full = (uint16_t)(*(uint16_t *)operation->source + (int8_t)temp8_); break; case MicroOp::IndexedPlaceHolder: printf("Hit placeholder!!!\n"); return; } #undef set_parity } } } template < class T, bool uses_bus_request, bool uses_wait_line> void Processor ::set_bus_request_line(bool value) { assert(uses_bus_request); bus_request_line_ = value; } template < class T, bool uses_bus_request, bool uses_wait_line> bool Processor ::get_bus_request_line() { return bus_request_line_; } template < class T, bool uses_bus_request, bool uses_wait_line> void Processor ::set_wait_line(bool value) { assert(uses_wait_line); wait_line_ = value; } template < class T, bool uses_bus_request, bool uses_wait_line> bool Processor ::get_wait_line() { return wait_line_; } #define isTerminal(n) (n == MicroOp::MoveToNextProgram || n == MicroOp::DecodeOperation || n == MicroOp::DecodeOperationNoRChange) template < class T, bool uses_bus_request, bool uses_wait_line> void Processor ::assemble_page(InstructionPage &target, InstructionTable &table, bool add_offsets) { size_t number_of_micro_ops = 0; size_t lengths[256]; // Count number of micro-ops required. for(int c = 0; c < 256; c++) { size_t length = 0; while(!isTerminal(table[c][length].type)) length++; length++; lengths[c] = length; number_of_micro_ops += length; } // Allocate a landing area. std::vector operation_indices; target.all_operations.reserve(number_of_micro_ops); target.instructions.resize(256, nullptr); // Copy in all programs, recording where they go. size_t destination = 0; for(size_t c = 0; c < 256; c++) { operation_indices.push_back(target.all_operations.size()); for(size_t t = 0; t < lengths[c];) { // Skip zero-length bus cycles. if(table[c][t].type == MicroOp::BusOperation && table[c][t].machine_cycle.length.as_int() == 0) { t++; continue; } // Skip optional waits if this instance doesn't use the wait line. if(table[c][t].machine_cycle.was_requested && !uses_wait_line) { t++; continue; } // If an index placeholder is hit then drop it, and if offsets aren't being added, // then also drop the indexing that follows, which is assumed to be everything // up to and including the next ::CalculateIndexAddress. Coupled to the INDEX() macro. if(table[c][t].type == MicroOp::IndexedPlaceHolder) { t++; if(!add_offsets) { while(table[c][t].type != MicroOp::CalculateIndexAddress) t++; t++; } } target.all_operations.emplace_back(table[c][t]); destination++; t++; } } // Since the vector won't change again, it's now safe to set pointers. size_t c = 0; for(size_t index : operation_indices) { target.instructions[c] = &target.all_operations[index]; c++; } } template < class T, bool uses_bus_request, bool uses_wait_line> void Processor ::copy_program(const MicroOp *source, std::vector &destination) { size_t length = 0; while(!isTerminal(source[length].type)) length++; size_t pointer = 0; while(true) { // TODO: This test is duplicated from assemble_page; can a better factoring be found? // Skip optional waits if this instance doesn't use the wait line. if(source[pointer].machine_cycle.was_requested && !uses_wait_line) { pointer++; continue; } destination.emplace_back(source[pointer]); if(isTerminal(source[pointer].type)) break; pointer++; } } #undef isTerminal bool ProcessorBase::get_halt_line() { return halt_mask_ == 0x00; } void ProcessorBase::set_interrupt_line(bool value, HalfCycles offset) { if(irq_line_ == value) return; // IRQ requests are level triggered and masked. irq_line_ = value; if(irq_line_ && iff1_) { request_status_ |= Interrupt::IRQ; } else { request_status_ &= ~Interrupt::IRQ; } // If this change happened at least one cycle ago then: (i) we're promised that this is a machine // cycle per the contract on supplying an offset; and (ii) that means it happened before the lines // were sampled. So adjust the most recent sample. if(offset <= HalfCycles(-2)) { last_request_status_ = (last_request_status_ & ~Interrupt::IRQ) | (request_status_ & Interrupt::IRQ); } } bool ProcessorBase::get_interrupt_line() { return irq_line_; } void ProcessorBase::set_non_maskable_interrupt_line(bool value, int offset) { // NMIs are edge triggered and cannot be masked. nmi_line_ = value; if(value) { request_status_ |= Interrupt::NMI; if(offset < 0) { last_request_status_ |= Interrupt::NMI; } } } bool ProcessorBase::get_non_maskable_interrupt_line() { return nmi_line_; } void ProcessorBase::set_reset_line(bool value) { // Reset requests are level triggered and cannot be masked. if(value) request_status_ |= Interrupt::Reset; else request_status_ &= ~Interrupt::Reset; }