// // Archimedes.cpp // Clock Signal // // Created by Thomas Harte on 04/03/2024. // Copyright © 2024 Thomas Harte. All rights reserved. // #include "Archimedes.hpp" #include "../../AudioProducer.hpp" #include "../../KeyboardMachine.hpp" #include "../../MediaTarget.hpp" #include "../../ScanProducer.hpp" #include "../../TimedMachine.hpp" #include "../../../InstructionSets/ARM/Executor.hpp" #include "../../../Outputs/Log.hpp" #include #include #include namespace { Log::Logger logger; enum class Zone { LogicallyMappedRAM, PhysicallyMappedRAM, IOControllers, LowROM, HighROM, VideoController, DMAAndMEMC, AddressTranslator, }; constexpr std::array zones(bool is_read) { std::array zones{}; for(size_t c = 0; c < zones.size(); c++) { const auto address = c << 21; if(address < 0x200'0000) { zones[c] = Zone::LogicallyMappedRAM; } else if(address < 0x300'0000) { zones[c] = Zone::PhysicallyMappedRAM; } else if(address < 0x340'0000) { zones[c] = Zone::IOControllers; } else if(address < 0x360'0000) { zones[c] = is_read ? Zone::LowROM : Zone::VideoController; } else if(address < 0x380'0000) { zones[c] = is_read ? Zone::LowROM : Zone::DMAAndMEMC; } else { zones[c] = is_read ? Zone::HighROM : Zone::AddressTranslator; } } return zones; } } namespace Archimedes { struct Video { void write(uint32_t value) { const auto target = (value >> 24) & 0xfc; switch(target) { case 0x00: case 0x04: case 0x08: case 0x0c: case 0x10: case 0x14: case 0x18: case 0x1c: case 0x20: case 0x24: case 0x28: case 0x2c: case 0x30: case 0x34: case 0x38: case 0x3c: logger.error().append("TODO: Video palette logical colour %d to %03x", (target >> 2), value & 0x1fff); break; case 0x40: logger.error().append("TODO: Video border colour to %03x", value & 0x1fff); break; case 0x44: case 0x48: case 0x4c: logger.error().append("TODO: Cursor colour %d to %03x", (target - 0x44) >> 2, value & 0x1fff); break; case 0x60: case 0x64: case 0x68: case 0x6c: case 0x70: case 0x74: case 0x78: case 0x7c: logger.error().append("TODO: Stereo image register %d to %03x", (target - 0x60) >> 2, value & 0x7); break; case 0x80: logger.error().append("TODO: Video horizontal period: %d", (value >> 14) & 0x3ff); break; case 0x84: logger.error().append("TODO: Video horizontal sync width: %d", (value >> 14) & 0x3ff); break; case 0x88: logger.error().append("TODO: Video horizontal border start: %d", (value >> 14) & 0x3ff); break; case 0x8c: logger.error().append("TODO: Video horizontal display start: %d", (value >> 14) & 0x3ff); break; case 0x90: logger.error().append("TODO: Video horizontal display end: %d", (value >> 14) & 0x3ff); break; case 0x94: logger.error().append("TODO: Video horizontal border end: %d", (value >> 14) & 0x3ff); break; case 0x98: logger.error().append("TODO: Video horizontal cursor end: %d", (value >> 14) & 0x3ff); break; case 0x9c: logger.error().append("TODO: Video horizontal interlace: %d", (value >> 14) & 0x3ff); break; case 0xa0: logger.error().append("TODO: Video vertical period: %d", (value >> 14) & 0x3ff); break; case 0xa4: logger.error().append("TODO: Video vertical sync width: %d", (value >> 14) & 0x3ff); break; case 0xa8: logger.error().append("TODO: Video vertical border start: %d", (value >> 14) & 0x3ff); break; case 0xac: logger.error().append("TODO: Video vertical display start: %d", (value >> 14) & 0x3ff); break; case 0xb0: logger.error().append("TODO: Video vertical display end: %d", (value >> 14) & 0x3ff); break; case 0xb4: logger.error().append("TODO: Video vertical border end: %d", (value >> 14) & 0x3ff); break; case 0xb8: logger.error().append("TODO: Video vertical cursor start: %d", (value >> 14) & 0x3ff); break; case 0xbc: logger.error().append("TODO: Video vertical cursor end: %d", (value >> 14) & 0x3ff); break; case 0xc0: logger.error().append("TODO: Sound frequency: %d", value & 0x7f); break; case 0xe0: logger.error().append("TODO: video control: %08x", value); break; default: logger.error().append("TODO: unrecognised VIDC write of %08x", value); break; } } }; struct Interrupts { // TODO: timers, which decrement at 2Mhz. void tick_timers() { for(int c = 0; c < 4; c++) { // Events happen only on a decrement to 0; a reload value of 0 effectively means 'don't count'. if(!counters_[c].value && !counters_[c].reload) { continue; } --counters_[c].value; if(!counters_[c].value) { counters_[c].value = counters_[c].reload; // TODO: event triggered here. } } } bool read(uint32_t address, uint8_t &value) { const auto target = address & 0x7f; switch(target) { default: break; case 0x00: logger.error().append("TODO: IOC control read"); value = 0; return true; // IRQ A. case 0x10: value = irq_a_.status; return true; case 0x14: value = irq_a_.request(); return true; case 0x18: value = irq_a_.mask; return true; // IRQ B. case 0x20: value = irq_b_.status; return true; case 0x24: value = irq_b_.request(); return true; case 0x28: value = irq_b_.mask; return true; // FIQ. case 0x30: value = fiq_.status; return true; case 0x34: value = fiq_.request(); return true; case 0x38: value = fiq_.mask; return true; // Counters. case 0x40: case 0x50: case 0x60: case 0x70: value = counters_[(target >> 4) - 0x4].output & 0xff; return true; case 0x44: case 0x54: case 0x64: case 0x74: value = counters_[(target >> 4) - 0x4].output >> 8; return true; } logger.error().append("TODO: IO controller read from %08x", address); return false; } bool write(uint32_t address, uint8_t value) { const auto target = address & 0x7f; switch(target) { default: break; case 0x00: logger.error().append("TODO: IOC control write %02x", value); return true; case 0x14: logger.error().append("TODO: IRQ clear write %02x", value); // b2: clear IF. // b3: clear IR. // b4: clear POR. // b5: clear TM[0]. // b6: clear TM[1]. return true; // Interrupts. case 0x18: irq_a_.mask = value; return true; case 0x28: irq_b_.mask = value; return true; case 0x38: fiq_.mask = value; return true; // Counters. case 0x40: case 0x50: case 0x60: case 0x70: counters_[(target >> 4) - 0x4].reload = uint16_t( (counters_[(target >> 4) - 0x4].reload & 0xff00) | value ); return true; case 0x44: case 0x54: case 0x64: case 0x74: counters_[(target >> 4) - 0x4].reload = uint16_t( (counters_[(target >> 4) - 0x4].reload & 0x00ff) | (value << 8) ); return true; case 0x48: case 0x58: case 0x68: case 0x78: counters_[(target >> 4) - 0x4].value = counters_[(target >> 4) - 0x4].reload; return true; case 0x4c: case 0x5c: case 0x6c: case 0x7c: counters_[(target >> 4) - 0x4].output = counters_[(target >> 4) - 0x4].value; return true; } logger.error().append("TODO: IO controller write of %02x at %08x", value, address); return false; } Interrupts() { irq_a_.status = 0x80 | 0x10; // i.e. 'set always' + 'power-on'. irq_b_.status = 0x00; fiq_.status = 0x80; // 'set always'. } private: struct Interrupt { uint8_t status, mask; uint8_t request() const { return status & mask; } }; Interrupt irq_a_, irq_b_, fiq_; struct Counter { uint16_t value; uint16_t reload; uint16_t output; }; Counter counters_[4]; }; /// Primarily models the MEMC. struct Memory { void set_rom(const std::vector &rom) { std::copy( rom.begin(), rom.begin() + static_cast(std::min(rom.size(), rom_.size())), rom_.begin()); } template bool write(uint32_t address, IntT source, InstructionSet::ARM::Mode mode, bool trans) { (void)trans; switch (write_zones_[(address >> 21) & 31]) { case Zone::DMAAndMEMC: // if(mode != InstructionSet::ARM::Mode::Supervisor) return false; if((address & 0b1110'0000'0000'0000'0000) == 0b1110'0000'0000'0000'0000) { // "The parameters are encoded into the processor address lines". os_mode_ = address & (1 << 12); sound_dma_enable_ = address & (1 << 11); video_dma_enable_ = address & (1 << 10); switch((address >> 8) & 3) { default: dynamic_ram_refresh_ = DynamicRAMRefresh::None; break; case 0b01: case 0b11: dynamic_ram_refresh_ = DynamicRAMRefresh((address >> 8) & 3); break; } high_rom_access_time_ = ROMAccessTime((address >> 6) & 3); low_rom_access_time_ = ROMAccessTime((address >> 4) & 3); page_size_ = PageSize((address >> 2) & 3); logger.info().append("MEMC Control: %08x -> OS:%d sound:%d video:%d high:%d low:%d size:%d", address, os_mode_, sound_dma_enable_, video_dma_enable_, high_rom_access_time_, low_rom_access_time_, page_size_); update_mapping(); return true; } else { logger.error().append("TODO: DMA/MEMC %08x to %08x", source, address); } break; case Zone::LogicallyMappedRAM: { const auto item = logical_ram(address, mode); if(!item) { return false; } *item = source; return true; } break; case Zone::IOControllers: ioc_.write(address, source); return true; case Zone::VideoController: // TODO: handle byte writes correctly. vidc_.write(source); break; case Zone::PhysicallyMappedRAM: // if(mode != InstructionSet::ARM::Mode::Supervisor) return false; physical_ram(address) = source; return true; case Zone::AddressTranslator: pages_[address & 0x7f] = address; update_mapping(); break; default: printf("TODO: write of %08x to %08x [%lu]\n", source, address, sizeof(IntT)); break; } return true; } template bool read(uint32_t address, IntT &source, InstructionSet::ARM::Mode mode, bool trans) { (void)trans; // logger.info().append("R %08x", address); switch (read_zones_[(address >> 21) & 31]) { case Zone::PhysicallyMappedRAM: // if(mode != InstructionSet::ARM::Mode::Supervisor) return false; source = physical_ram(address); return true; case Zone::LogicallyMappedRAM: { if(!has_moved_rom_) { // TODO: maintain this state in the zones table. source = high_rom(address); return true; } const auto item = logical_ram(address, mode); if(!item) { return false; } source = *item; return true; } break; case Zone::LowROM: logger.error().append("TODO: Low ROM read from %08x", address); break; case Zone::HighROM: // Real test is: require A24=A25=0, then A25=1. // TODO: as above, move this test into the zones tables. has_moved_rom_ = true; source = high_rom(address); return true; case Zone::IOControllers: { if constexpr (std::is_same_v) { ioc_.read(address, source); return true; } else { // TODO: generalise this adaptation of an 8-bit device to the 32-bit bus, which probably isn't right anyway. uint8_t value; ioc_.read(address, value); // if(!ioc_.read(address, value)) { // return false; // } source = value; return true; } } default: logger.error().append("TODO: read from %08x", address); break; } source = 0; return true; } Memory() { // Install initial logical memory map. update_mapping(); } void tick_timers() { ioc_.tick_timers(); } private: bool has_moved_rom_ = false; std::array ram_{}; std::array rom_; Interrupts ioc_; Video vidc_; template IntT &physical_ram(uint32_t address) { return *reinterpret_cast(&ram_[address & (ram_.size() - 1)]); } template IntT &high_rom(uint32_t address) { return *reinterpret_cast(&rom_[address & (rom_.size() - 1)]); } static constexpr std::array read_zones_ = zones(true); static constexpr std::array write_zones_ = zones(false); // Control register values. bool os_mode_ = false; bool sound_dma_enable_ = false; bool video_dma_enable_ = false; // "Unaffected" by reset, so here picked arbitrarily. enum class DynamicRAMRefresh { None = 0b00, DuringFlyback = 0b01, Continuous = 0b11, } dynamic_ram_refresh_ = DynamicRAMRefresh::None; // State at reset is undefined; constrain to a valid enum value. enum class ROMAccessTime { ns450 = 0b00, ns325 = 0b01, ns200 = 0b10, ns200with60nsNibble = 0b11, } high_rom_access_time_ = ROMAccessTime::ns450, low_rom_access_time_ = ROMAccessTime::ns450; enum class PageSize { kb4 = 0b00, kb8 = 0b01, kb16 = 0b10, kb32 = 0b11, } page_size_ = PageSize::kb4; // Address translator. // // MEMC contains one entry per a physical page number, indicating where it goes logically. // Any logical access is tested against all 128 mappings. So that's backwards compared to // the ideal for an emulator, which would map from logical to physical, even if a lot more // compact — there are always 128 physical pages; there are up to 8192 logical pages. // // So captured here are both the physical -> logical map as representative of the real // hardware, and the reverse logical -> physical map, which is built (and rebuilt, and rebuilt) // from the other. // Physical to logical mapping. std::array pages_{}; // Logical to physical mapping. struct MappedPage { uint8_t *target = nullptr; uint8_t protection_level = 0; }; std::array mapping_; template IntT *logical_ram(uint32_t address, InstructionSet::ARM::Mode mode) { address &= 0x1ff'ffff; size_t page; // TODO: eliminate switch here. switch(page_size_) { default: case PageSize::kb4: page = address >> 12; address &= 0x0fff; break; case PageSize::kb8: page = address >> 13; address &= 0x1fff; break; case PageSize::kb16: page = address >> 14; address &= 0x3fff; break; case PageSize::kb32: page = address >> 15; address &= 0x7fff; break; } if(!mapping_[page].target) { return nullptr; } // TODO: eliminate switch here. // Top of my head idea: is_read, is_user and is_os_mode make three bits, so // keep a one-byte bitmap of permitted accesses rather than the raw protection // level? switch(mapping_[page].protection_level) { case 0b00: break; case 0b01: if(!is_read && mode == InstructionSet::ARM::Mode::User) { return nullptr; } break; default: if(mode == InstructionSet::ARM::Mode::User) { return nullptr; } if(!is_read && !os_mode_) { return nullptr; } break; } return reinterpret_cast(mapping_[page].target + address); } void update_mapping() { // For each physical page, project it into logical space. switch(page_size_) { default: case PageSize::kb4: update_mapping(); break; case PageSize::kb8: update_mapping(); break; case PageSize::kb16: update_mapping(); break; case PageSize::kb32: update_mapping(); break; } logger.info().append("Updated logical RAM mapping"); } template void update_mapping() { // Clear all logical mappings. std::fill(mapping_.begin(), mapping_.end(), MappedPage{}); const auto bits = [](int start, int end) -> uint32_t { return ((1 << start) - 1) - ((1 << end) - 1); }; // For each physical page, project it into logical space // and store it. for(const auto page: pages_) { uint32_t physical, logical; switch(size) { case PageSize::kb4: // 4kb: // A[6:0] -> PPN[6:0] // A[11:10] -> LPN[12:11]; A[22:12] -> LPN[10:0] i.e. 8192 logical pages physical = page & bits(6, 0); physical <<= 12; logical = (page & bits(11, 10)) << 1; logical |= (page & bits(22, 12)) >> 12; break; case PageSize::kb8: // 8kb: // A[0] -> PPN[6]; A[6:1] -> PPN[5:0] // A[11:10] -> LPN[11:10]; A[22:13] -> LPN[9:0] i.e. 4096 logical pages physical = (page & bits(0, 0)) << 6; physical |= (page & bits(6, 1)) >> 1; physical <<= 13; logical = page & bits(11, 10); logical |= (page & bits(22, 13)) >> 13; break; case PageSize::kb16: // 16kb: // A[1:0] -> PPN[6:5]; A[6:2] -> PPN[4:0] // A[11:10] -> LPN[10:9]; A[22:14] -> LPN[8:0] i.e. 2048 logical pages physical = (page & bits(1, 0)) << 5; physical |= (page & bits(6, 2)) >> 2; physical <<= 14; logical = (page & bits(11, 10)) >> 1; logical |= (page & bits(22, 14)) >> 14; break; case PageSize::kb32: // 32kb: // A[1] -> PPN[6]; A[2] -> PPN[5]; A[0] -> PPN[4]; A[6:3] -> PPN[6:3] // A[11:10] -> LPN[9:8]; A[22:15] -> LPN[7:0] i.e. 1024 logical pages physical = (page & bits(1, 1)) << 5; physical |= (page & bits(2, 2)) << 3; physical |= (page & bits(0, 0)) << 4; physical |= page & bits(6, 3); physical <<= 15; logical = (page & bits(11, 10)) >> 2; logical |= (page & bits(22, 15)) >> 15; break; } // TODO: consider clashes. // TODO: what if there's less than 4mb present? mapping_[logical].target = &ram_[physical]; mapping_[logical].protection_level = (page >> 8) & 3; } } }; class ConcreteMachine: public Machine, public MachineTypes::MediaTarget, public MachineTypes::TimedMachine, public MachineTypes::ScanProducer { // TODO: pick a sensible clock rate; this is just code for '20 MIPS, please'. static constexpr int ClockRate = 20'000'000; // Timers tick at 2Mhz, so figure out the proper divider for that. static constexpr int TimerTarget = ClockRate / 2'000'000; int timer_divider_ = TimerTarget; public: ConcreteMachine( const Analyser::Static::Target &target, const ROMMachine::ROMFetcher &rom_fetcher ) { set_clock_rate(ClockRate); constexpr ROM::Name risc_os = ROM::Name::AcornRISCOS319; ROM::Request request(risc_os); auto roms = rom_fetcher(request); if(!request.validate(roms)) { throw ROMMachine::Error::MissingROMs; } executor_.bus.set_rom(roms.find(risc_os)->second); insert_media(target.media); } private: // MARK: - ScanProducer. void set_scan_target(Outputs::Display::ScanTarget *scan_target) override { (void)scan_target; } Outputs::Display::ScanStatus get_scaled_scan_status() const override { return Outputs::Display::ScanStatus(); } // MARK: - TimedMachine. void run_for(Cycles cycles) override { static uint32_t last_pc = 0; static uint32_t last_link = 0; static uint32_t last_r0 = 0; static uint32_t last_r1 = 0; static uint32_t last_r10 = 0; auto instructions = cycles.as(); while(instructions) { auto run_length = std::min(timer_divider_, instructions); instructions -= run_length; timer_divider_ -= run_length; while(run_length--) { uint32_t instruction; if(!executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false)) { logger.info().append("Prefetch abort at %08x; last good was at %08x", executor_.pc(), last_pc); executor_.prefetch_abort(); // TODO: does a double abort cause a reset? executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false); } else { last_pc = executor_.pc(); } // TODO: pipeline prefetch? static bool log = false; // if(executor_.pc() == 0x02000058) { // printf(""); // } // log |= (executor_.pc() == 0x02000054); // log = (executor_.pc() == 0x038019dc); if(log) { logger.info().append("%08x: %08x prior:[r0:%08x r1:%08x r4:%08x r10:%08x r14:%08x]", executor_.pc(), instruction, executor_.registers()[0], executor_.registers()[1], executor_.registers()[4], executor_.registers()[10], executor_.registers()[14] ); } InstructionSet::ARM::execute(instruction, executor_); // if( // last_link != executor_.registers()[14] || // last_r0 != executor_.registers()[0] || // last_r10 != executor_.registers()[10] || // last_r1 != executor_.registers()[1] // ) { // logger.info().append("%08x modified R14 to %08x; R0 to %08x; R10 to %08x; R1 to %08x", // last_pc, // executor_.registers()[14], // executor_.registers()[0], // executor_.registers()[10], // executor_.registers()[1] // ); // last_link = executor_.registers()[14]; // last_r0 = executor_.registers()[0]; // last_r10 = executor_.registers()[10]; // last_r1 = executor_.registers()[1]; // } } if(!timer_divider_) { executor_.bus.tick_timers(); timer_divider_ = TimerTarget; } } } // MARK: - MediaTarget bool insert_media(const Analyser::Static::Media &) override { // int c = 0; // for(auto &disk : media.disks) { // fdc_.set_disk(disk, c); // c++; // if(c == 4) break; // } // return true; return false; } // MARK: - ARM execution static constexpr auto arm_model = InstructionSet::ARM::Model::ARMv2; InstructionSet::ARM::Executor executor_; }; } using namespace Archimedes; std::unique_ptr Machine::Archimedes(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) { return std::make_unique(*target, rom_fetcher); }