1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-09 01:29:44 +00:00
CLK/Components/DiskII/DiskII.cpp
2023-12-26 14:13:01 -05:00

319 lines
11 KiB
C++

//
// DiskII.cpp
// Clock Signal
//
// Created by Thomas Harte on 20/04/2018.
// Copyright 2018 Thomas Harte. All rights reserved.
//
#include "DiskII.hpp"
#include <cstdio>
#include <cstring>
using namespace Apple;
namespace {
const uint8_t input_command = 0x4; // i.e. Q6
const uint8_t input_mode = 0x8; // i.e. Q7
const uint8_t input_flux = 0x1;
}
DiskII::DiskII(int clock_rate) :
clock_rate_(clock_rate),
inputs_(input_command),
drives_{
// Bit of a hack here: drives are marginally slowed down compared to real drives
// in order to accomodate NIB files, which usually carry more data than will
// physically fit on a track once slip bits are reinserted.
//
// I don't like the coupling here.
// TODO: resolve better, somehow.
Storage::Disk::Drive{clock_rate, 295, 1},
Storage::Disk::Drive{clock_rate, 295, 1}
}
{
drives_[0].set_clocking_hint_observer(this);
drives_[1].set_clocking_hint_observer(this);
drives_[active_drive_].set_event_delegate(this);
}
void DiskII::set_control(Control control, bool on) {
int previous_stepper_mask = stepper_mask_;
switch(control) {
case Control::P0: stepper_mask_ = (stepper_mask_ & 0xe) | (on ? 0x1 : 0x0); break;
case Control::P1: stepper_mask_ = (stepper_mask_ & 0xd) | (on ? 0x2 : 0x0); break;
case Control::P2: stepper_mask_ = (stepper_mask_ & 0xb) | (on ? 0x4 : 0x0); break;
case Control::P3: stepper_mask_ = (stepper_mask_ & 0x7) | (on ? 0x8 : 0x0); break;
case Control::Motor:
motor_is_enabled_ = on;
drives_[active_drive_].set_motor_on(on);
return;
}
// If the stepper magnet selections have changed, and any is on, see how
// that moves the head.
if(previous_stepper_mask ^ stepper_mask_ && stepper_mask_) {
// Convert from a representation of bits set to the centre of pull.
int direction = 0;
if(stepper_mask_&1) direction += (((stepper_position_ - 0) + 4)&7) - 4;
if(stepper_mask_&2) direction += (((stepper_position_ - 2) + 4)&7) - 4;
if(stepper_mask_&4) direction += (((stepper_position_ - 4) + 4)&7) - 4;
if(stepper_mask_&8) direction += (((stepper_position_ - 6) + 4)&7) - 4;
// TODO: when adopting C++20, replace with std::popcount.
int bits_set = stepper_mask_;
bits_set = (bits_set & 0x5) + ((bits_set >> 1) & 0x5);
bits_set = (bits_set & 0x3) + ((bits_set >> 2) & 0x3);
direction /= bits_set;
// Compare to the stepper position to decide whether that pulls in the current cog notch,
// or grabs a later one.
drives_[active_drive_].step(Storage::Disk::HeadPosition(-direction, 4));
stepper_position_ = (stepper_position_ - direction + 8) & 7;
}
}
void DiskII::select_drive(int drive) {
if((drive&1) == active_drive_) return;
drives_[active_drive_].set_event_delegate(this);
drives_[active_drive_^1].set_event_delegate(nullptr);
drives_[active_drive_].set_motor_on(false);
active_drive_ = drive & 1;
drives_[active_drive_].set_motor_on(motor_is_enabled_);
}
// The read pulse is controlled by a special IC that outputs a 1us pulse for every field reversal on the disk.
void DiskII::run_for(const Cycles cycles) {
if(preferred_clocking() == ClockingHint::Preference::None) return;
auto integer_cycles = cycles.as_integral();
while(integer_cycles--) {
const int address = (state_ & 0xf0) | inputs_ | ((shift_register_&0x80) >> 6);
if(flux_duration_) {
--flux_duration_;
if(!flux_duration_) inputs_ |= input_flux;
}
state_ = state_machine_[size_t(address)];
switch(state_ & 0xf) {
default: shift_register_ = 0; break; // clear
case 0x8:
case 0xc: break; // nop
case 0x9: shift_register_ = uint8_t(shift_register_ << 1); break; // shift left, bringing in a zero
case 0xd: shift_register_ = uint8_t((shift_register_ << 1) | 1); break; // shift left, bringing in a one
case 0xa:
case 0xe: // shift right, bringing in write protected status
shift_register_ = (shift_register_ >> 1) | (is_write_protected() ? 0x80 : 0x00);
// If the controller is in the sense write protect loop but the register will never change,
// short circuit further work and return now.
if(shift_register_ == (is_write_protected() ? 0xff : 0x00)) {
if(!drive_is_sleeping_[0]) drives_[0].run_for(Cycles(integer_cycles));
if(!drive_is_sleeping_[1]) drives_[1].run_for(Cycles(integer_cycles));
decide_clocking_preference();
return;
}
break;
case 0xb:
case 0xf: shift_register_ = data_input_; break; // load data register from data bus
}
// Currently writing?
if(inputs_&input_mode) {
// state_ & 0x80 should be the current level sent to the disk;
// therefore transitions in that bit should become flux transitions
drives_[active_drive_].write_bit((state_ ^ address) & 0x80);
}
// TODO: surely there's a less heavyweight solution than inline updates?
if(!drive_is_sleeping_[0]) drives_[0].run_for(Cycles(1));
if(!drive_is_sleeping_[1]) drives_[1].run_for(Cycles(1));
}
// Per comp.sys.apple2.programmer there is a delay between the controller
// motor switch being flipped and the drive motor actually switching off.
// This models that, accepting overrun as a risk.
if(motor_off_time_ >= 0) {
motor_off_time_ -= cycles.as_integral();
if(motor_off_time_ < 0) {
set_control(Control::Motor, false);
}
}
decide_clocking_preference();
}
void DiskII::decide_clocking_preference() {
ClockingHint::Preference prior_preference = clocking_preference_;
// If in read mode, clocking is either:
//
// just-in-time, if drives are running or the shift register has any 1s in it and shifting may occur, or a flux event hasn't yet passed; or
// none, given that drives are not running, the shift register has already emptied or stopped and there's no flux about to be received.
if(!(inputs_ & ~input_flux)) {
const bool is_stuck_at_nop =
!flux_duration_ && state_machine_[(state_ & 0xf0) | inputs_ | ((shift_register_ & 0x80) >> 6)] == state_ && ((state_ & 0xf) == 0x8 || (state_ & 0xf) == 0xc);
clocking_preference_ =
(drive_is_sleeping_[0] && drive_is_sleeping_[1] && (!shift_register_ || is_stuck_at_nop) && (inputs_&input_flux))
? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime;
}
// If in writing mode, clocking is real time.
if(inputs_ & input_mode) {
clocking_preference_ = ClockingHint::Preference::RealTime;
}
// If in sense-write-protect mode, clocking is just-in-time if the shift register hasn't yet filled with the value that
// corresponds to the current write protect status. Otherwise it is none.
if((inputs_ & ~input_flux) == input_command) {
clocking_preference_ = ((shift_register_ == (is_write_protected() ? 0xff : 0x00)) && ((state_ & 0xf) == 0xa || (state_ & 0xf) == 0xe)) ? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime;
}
// Announce a change if there was one.
if(prior_preference != clocking_preference_)
update_clocking_observer();
}
bool DiskII::is_write_protected() {
return (stepper_mask_ & 2) || drives_[active_drive_].get_is_read_only();
}
void DiskII::set_state_machine(const std::vector<uint8_t> &state_machine) {
/*
An unadulterated P6 ROM read returns values with an address formed as:
state b0, state b2, state b3, pulse, Q7, Q6, shift, state b1
... and has the top nibble of each value stored in the ROM reflected.
Beneath Apple Pro-DOS uses a different order and several of the
online copies are reformatted into that order.
So the code below remaps into Beneath Apple Pro-DOS order if the
supplied state machine isn't already in that order.
*/
if(state_machine[0] != 0x18) {
for(size_t source_address = 0; source_address < 256; ++source_address) {
// Remap into Beneath Apple Pro-DOS address form.
const size_t destination_address =
((source_address&0x20) ? 0x80 : 0x00) |
((source_address&0x40) ? 0x40 : 0x00) |
((source_address&0x01) ? 0x20 : 0x00) |
((source_address&0x80) ? 0x10 : 0x00) |
((source_address&0x08) ? 0x08 : 0x00) |
((source_address&0x04) ? 0x04 : 0x00) |
((source_address&0x02) ? 0x02 : 0x00) |
((source_address&0x10) ? 0x01 : 0x00);
// Store.
const uint8_t source_value = state_machine[source_address];
state_machine_[destination_address] =
((source_value & 0x80) ? 0x10 : 0x0) |
((source_value & 0x40) ? 0x20 : 0x0) |
((source_value & 0x20) ? 0x40 : 0x0) |
((source_value & 0x10) ? 0x80 : 0x0) |
(source_value & 0x0f);
}
} else {
for(size_t source_address = 0; source_address < 256; ++source_address) {
// Reshuffle ordering of bytes only, to retain indexing by the high nibble.
const size_t destination_address =
((source_address&0x80) ? 0x80 : 0x00) |
((source_address&0x40) ? 0x40 : 0x00) |
((source_address&0x01) ? 0x20 : 0x00) |
((source_address&0x20) ? 0x10 : 0x00) |
((source_address&0x08) ? 0x08 : 0x00) |
((source_address&0x04) ? 0x04 : 0x00) |
((source_address&0x02) ? 0x02 : 0x00) |
((source_address&0x10) ? 0x01 : 0x00);
state_machine_[destination_address] = state_machine[source_address];
}
}
}
void DiskII::set_disk(const std::shared_ptr<Storage::Disk::Disk> &disk, int drive) {
drives_[drive].set_disk(disk);
}
void DiskII::process_event(const Storage::Disk::Drive::Event &event) {
if(event.type == Storage::Disk::Track::Event::FluxTransition) {
inputs_ &= ~input_flux;
flux_duration_ = 2; // Upon detection of a flux transition, the flux flag should stay set for 1us. Emulate that as two cycles.
decide_clocking_preference();
}
}
void DiskII::set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) {
drive_is_sleeping_[0] = drives_[0].preferred_clocking() == ClockingHint::Preference::None;
drive_is_sleeping_[1] = drives_[1].preferred_clocking() == ClockingHint::Preference::None;
decide_clocking_preference();
}
ClockingHint::Preference DiskII::preferred_clocking() const {
return clocking_preference_;
}
void DiskII::set_data_input(uint8_t input) {
data_input_ = input;
}
int DiskII::read_address(int address) {
switch(address & 0xf) {
default:
case 0x0: set_control(Control::P0, false); break;
case 0x1: set_control(Control::P0, true); break;
case 0x2: set_control(Control::P1, false); break;
case 0x3: set_control(Control::P1, true); break;
case 0x4: set_control(Control::P2, false); break;
case 0x5: set_control(Control::P2, true); break;
case 0x6: set_control(Control::P3, false); break;
case 0x7: set_control(Control::P3, true); break;
case 0x8:
shift_register_ = 0;
motor_off_time_ = clock_rate_;
break;
case 0x9:
set_control(Control::Motor, true);
motor_off_time_ = -1;
break;
case 0xa: select_drive(0); break;
case 0xb: select_drive(1); break;
case 0xc: inputs_ &= ~input_command; break;
case 0xd: inputs_ |= input_command; break;
case 0xe:
if(inputs_ & input_mode)
drives_[active_drive_].end_writing();
inputs_ &= ~input_mode;
break;
case 0xf:
if(!(inputs_ & input_mode))
drives_[active_drive_].begin_writing(Storage::Time(1, int(clock_rate_)), false);
inputs_ |= input_mode;
break;
}
decide_clocking_preference();
return (address & 1) ? DidNotLoad : shift_register_;
}
void DiskII::set_activity_observer(Activity::Observer *observer) {
drives_[0].set_activity_observer(observer, "Drive 1", true);
drives_[1].set_activity_observer(observer, "Drive 2", true);
}
Storage::Disk::Drive &DiskII::get_drive(int index) {
return drives_[index];
}