1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-25 18:30:07 +00:00
CLK/Storage/MassStorage/SCSI/Target.hpp
2024-01-19 10:41:59 -05:00

399 lines
12 KiB
C++

//
// Target.hpp
// Clock Signal
//
// Created by Thomas Harte on 17/08/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#pragma once
#include "SCSI.hpp"
#include "../../../Outputs/Log.hpp"
#include <cassert>
#include <cstring>
#include <functional>
namespace SCSI::Target {
/*!
Encapsulates the arguments supplied for a target SCSI command during
the command phase plus any other data read since then.
*/
class CommandState {
public:
CommandState(const std::vector<uint8_t> &command, const std::vector<uint8_t> &received);
// For read and write commands.
struct ReadWrite {
uint32_t address, number_of_blocks;
};
ReadWrite read_write_specs() const;
// For inquiry commands.
size_t allocated_inquiry_bytes() const;
// For mode sense commands.
struct ModeSense {
bool exclude_block_descriptors = false;
enum class PageControlValues {
Current = 0,
Changeable = 1,
Default = 2,
Saved = 3
} page_control_values = PageControlValues::Current;
uint8_t page_code;
uint8_t subpage_code;
uint16_t allocated_bytes;
};
ModeSense mode_sense_specs() const;
struct ModeSelect {
bool content_is_vendor_specific = true;
bool revert_to_default = false;
bool save_pages = false;
uint16_t parameter_list_length = 0;
};
ModeSelect mode_select_specs() const;
struct ReadBuffer {
enum class Mode {
CombinedHeaderAndData = 0,
VendorSpecific = 1,
Data = 2,
Descriptor = 3,
Reserved = 4
} mode = Mode::CombinedHeaderAndData;
uint8_t buffer_id = 0;
uint32_t buffer_offset = 0, buffer_length = 0;
};
ReadBuffer read_buffer_specs() const;
const std::vector<uint8_t> &received_data() const {
return received_;
}
private:
uint32_t address() const;
uint16_t number_of_blocks() const;
const std::vector<uint8_t> &data_;
const std::vector<uint8_t> &received_;
};
/*!
A Responder is supplied both (i) to the initial call-in to an Executor; and
(ii) to all continuations provided by that Executor. It allows the next
set of bus interactions to be dictated.
*/
struct Responder {
using continuation = std::function<void(const CommandState &, Responder &)>;
enum class Status {
Good = 0x00,
CheckCondition = 0x02,
ConditionMet = 0x04,
Busy = 0x08,
Intermediate = 0x10,
IntermediateConditionMet = 0x14,
ReservationConflict = 0x18,
CommandTerminated = 0x22,
TaskSetFull = 0x28,
ACAActive = 0x30,
TaskAborted = 0x40
};
enum class Message {
CommandComplete = 0x00
};
/*!
Causes the SCSI device to send @c data to the initiator and
call @c next when done.
*/
virtual void send_data(std::vector<uint8_t> &&data, continuation next) = 0;
/*!
Causes the SCSI device to receive @c length bytes from the initiator and
call @c next when done. The bytes will be accessible via the CommandInput object.
*/
virtual void receive_data(size_t length, continuation next) = 0;
/*!
Communicates the supplied status to the initiator.
*/
virtual void send_status(Status, continuation next) = 0;
/*!
Communicates the supplied message to the initiator.
*/
virtual void send_message(Message, continuation next) = 0;
/*!
Ends the SCSI command.
*/
virtual void end_command() = 0;
/*!
Terminates a SCSI command, sending the proper sequence of status and message phases.
*/
void terminate_command(Status status) {
send_status(status, [] (const Target::CommandState &, Target::Responder &responder) {
responder.send_message(Target::Responder::Message::CommandComplete, [] (const Target::CommandState &, Target::Responder &responder) {
responder.end_command();
});
});
}
};
/*!
Executors contain device-specific logic; when the target has completed
the command phase it will call the appropriate method on its executor,
supplying it with the command's arguments.
If you implement a method, you should push a result and return @c true.
Return @c false if you do not implement a method (or, just inherit from
the basic executor below, and don't implement anything you don't support).
*/
struct Executor {
/* Group 0 commands. */
bool test_unit_ready(const CommandState &, Responder &responder) {
/* "Returns zero status if addressed unit is powered on and ready. */
responder.terminate_command(Target::Responder::Status::Good);
return true;
}
bool rezero_unit(const CommandState &, Responder &) { return false; }
bool request_sense(const CommandState &, Responder &) { return false; }
bool format_unit(const CommandState &, Responder &) { return false; }
bool seek(const CommandState &, Responder &) { return false; }
bool reserve_unit(const CommandState &, Responder &) { return false; }
bool release_unit(const CommandState &, Responder &) { return false; }
bool read_diagnostic(const CommandState &, Responder &) { return false; }
bool write_diagnostic(const CommandState &, Responder &) { return false; }
/// Mode sense: the default implementation will call into the appropriate
/// structured getter.
bool mode_sense(const CommandState &state, Responder &responder) {
const auto specs = state.mode_sense_specs();
std::vector<uint8_t> response = {
specs.page_code,
uint8_t(specs.allocated_bytes)
};
switch(specs.page_code) {
default:
printf("Unknown mode sense page code %02x\n", specs.page_code);
response.resize(specs.allocated_bytes);
break;
case 0x30:
response.resize(34);
strcpy(reinterpret_cast<char *>(&response[14]), "APPLE COMPUTER, INC"); // This seems to be required to satisfy the Apple HD SC Utility.
break;
}
if(specs.allocated_bytes < response.size()) {
response.resize(specs.allocated_bytes);
}
responder.send_data(std::move(response), [] (const Target::CommandState &, Target::Responder &responder) {
responder.terminate_command(Target::Responder::Status::Good);
});
return true;
}
bool mode_select(const CommandState &state, Responder &responder) {
const auto specs = state.mode_select_specs();
responder.receive_data(specs.parameter_list_length, [] (const Target::CommandState &, Target::Responder &responder) {
// TODO: parse data according to current sense mode.
responder.terminate_command(Target::Responder::Status::Good);
});
return true;
}
/// Inquiry: the default implementation will call the structured version and
/// package appropriately.
struct Inquiry {
enum class DeviceType {
DirectAccess = 0,
SequentialAccess = 1,
Printer = 2,
Processor = 3,
WriteOnceMultipleRead = 4,
ReadOnlyDirectAccess = 5,
Scanner = 6,
OpticalMemory = 7,
MediumChanger = 8,
Communications = 9,
} device_type = DeviceType::DirectAccess;
bool is_removeable = false;
uint8_t iso_standard = 0, ecma_standard = 0, ansi_standard = 0;
bool supports_asynchronous_events = false;
bool supports_terminate_io_process = false;
bool supports_relative_addressing = false;
bool supports_synchronous_transfer = true;
bool supports_linked_commands = false;
bool supports_command_queing = false;
bool supports_soft_reset = false;
char vendor_identifier[9] = "";
char product_identifier[17] = "";
char product_revision_level[5] = "";
Inquiry(const char *vendor, const char *product, const char *revision) {
assert(strlen(vendor) <= 8);
assert(strlen(product) <= 16);
assert(strlen(revision) <= 4);
strcpy(vendor_identifier, vendor);
strcpy(product_identifier, product);
strcpy(product_revision_level, revision);
}
Inquiry() = default;
};
Inquiry inquiry_values() {
return Inquiry();
}
bool inquiry(const CommandState &state, Responder &responder) {
const Inquiry inq = inquiry_values();
// Set up the easy fields.
std::vector<uint8_t> response = {
uint8_t(inq.device_type),
uint8_t(inq.is_removeable ? 0x80 : 0x00),
uint8_t((inq.iso_standard << 5) | (inq.ecma_standard << 3) | (inq.ansi_standard)),
uint8_t((inq.supports_asynchronous_events ? 0x80 : 0x00) | (inq.supports_terminate_io_process ? 0x40 : 0x00) | 0x02),
32, /* Additional length: 36 - 4. */
0x00, /* Reserved. */
0x00, /* Reserved. */
uint8_t(
(inq.supports_relative_addressing ? 0x80 : 0x00) |
/* b6: supports 32-bit data; b5: supports 16-bit data. */
(inq.supports_synchronous_transfer ? 0x10 : 0x00) |
(inq.supports_linked_commands ? 0x08 : 0x00) |
/* b3: reserved. */
(inq.supports_command_queing ? 0x02 : 0x00) |
(inq.supports_soft_reset ? 0x01 : 0x00)
),
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Space for the vendor ID. */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Space for the product ID. */
0x00, 0x00, 0x00, 0x00 /* Space for the revision level. */
};
auto copy_string = [] (uint8_t *destination, const char *source, size_t length) -> void {
// Determine length of source and copy in as much as possible.
const auto source_length = std::min(strlen(source), length);
memcpy(destination, source, source_length);
// Fill the rest with spaces.
memset(&destination[source_length], ' ', length - source_length);
};
copy_string(&response[8], inq.vendor_identifier, 8);
copy_string(&response[16], inq.product_identifier, 16);
copy_string(&response[32], inq.product_revision_level, 4);
// Truncate if requested.
const auto allocated_bytes = state.allocated_inquiry_bytes();
if(allocated_bytes < response.size()) {
response.resize(allocated_bytes);
}
responder.send_data(std::move(response), [] (const Target::CommandState &, Target::Responder &responder) {
responder.terminate_command(Target::Responder::Status::Good);
});
return true;
}
/* Group 0/1 commands. */
bool read(const CommandState &, Responder &) { return false; }
bool write(const CommandState &, Responder &) { return false; }
/* Group 1 commands. */
bool read_capacity(const CommandState &, Responder &) { return false; }
bool write_and_verify(const CommandState &, Responder &) { return false; }
bool verify(const CommandState &, Responder &) { return false; }
bool search_data_equal(const CommandState &, Responder &) { return false; }
bool search_data_high(const CommandState &, Responder &) { return false; }
bool search_data_low(const CommandState &, Responder &) { return false; }
bool read_buffer(const CommandState &state, Responder &responder) {
// Since I have no idea what earthly function READ BUFFER is meant to allow,
// the default implementation just returns an empty buffer of the requested size.
const auto specs = state.read_buffer_specs();
responder.send_data(std::vector<uint8_t>(specs.buffer_length), [] (const Target::CommandState &, Target::Responder &responder) {
responder.terminate_command(Target::Responder::Status::Good);
});
return true;
}
/* Group 5 commands. */
bool set_block_limits(const CommandState &, Responder &) { return false; }
};
/*!
A template for any SCSI target; provides the necessary bus glue to
receive and respond to commands. Specific targets should be implemented
as Executors.
*/
template <typename Executor> class Target: public Bus::Observer, public Responder {
public:
/*!
Instantiates a target attached to @c bus,
with SCSI ID @c scsi_id — a number in the range 0 to 7.
Received commands will be handed to the Executor to perform.
*/
Target(Bus &bus, int scsi_id);
inline Executor *operator->() {
return &executor_;
}
private:
Executor executor_;
Log::Logger<Log::Source::SCSI> log_;
// Bus::Observer.
void scsi_bus_did_change(Bus *, BusState new_state, double time_since_change) final;
// Responder
void send_data(std::vector<uint8_t> &&data, continuation next) final;
void receive_data(size_t length, continuation next) final;
void send_status(Status, continuation next) final;
void send_message(Message, continuation next) final;
void end_command() final;
// Instance storage.
Bus &bus_;
const BusState scsi_id_mask_;
const size_t scsi_bus_device_id_;
enum class Phase {
AwaitingSelection,
Command,
ReceivingData,
SendingData,
SendingStatus,
SendingMessage
} phase_ = Phase::AwaitingSelection;
BusState bus_state_ = DefaultBusState;
void set_device_output(BusState state) {
expected_control_state_ = state & (Line::Control | Line::Input | Line::Message);
bus_.set_device_output(scsi_bus_device_id_, state);
}
BusState expected_control_state_ = DefaultBusState;
void begin_command(uint8_t first_byte);
std::vector<uint8_t> command_;
Status status_;
Message message_;
size_t command_pointer_ = 0;
bool dispatch_command();
std::vector<uint8_t> data_;
size_t data_pointer_ = 0;
continuation next_function_;
};
#include "TargetImplementation.hpp"
}