1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Outputs/CRT.cpp

442 lines
15 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include <stdarg.h>
#include <math.h>
using namespace Outputs;
#define kRetraceXMask 0x01
#define kRetraceYMask 0x02
CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
{
const int syncCapacityLineChargeThreshold = 5;
const int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
const int scanlinesVerticalRetraceTime = 10; // source: ibid
_time_multiplier = (1000 + cycles_per_line - 1) / cycles_per_line;
// store fundamental display configuration properties
_height_of_display = height_of_display;// + (height_of_display / 10);
_cycles_per_line = cycles_per_line * _time_multiplier;
// generate timing values implied by the given arbuments
_hsync_error_window = _cycles_per_line >> 5;
_sync_capacitor_charge_threshold = (syncCapacityLineChargeThreshold * _cycles_per_line) >> 1;
_horizontal_retrace_time = (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6;
_vertical_retrace_time = scanlinesVerticalRetraceTime * _cycles_per_line;
_scanSpeed.x = UINT32_MAX / _cycles_per_line;
_scanSpeed.y = UINT32_MAX / (_height_of_display * _cycles_per_line);
_retraceSpeed.x = UINT32_MAX / _horizontal_retrace_time;
_retraceSpeed.y = UINT32_MAX / _vertical_retrace_time;
// precompute the lengths of all four combinations of scan direction, for fast triangle
// strip generation later
float scanSpeedXfl = 1.0f / (float)_cycles_per_line;
float scanSpeedYfl = 1.0f / (float)(_height_of_display * _cycles_per_line);
float retraceSpeedXfl = 1.0f / (float)_horizontal_retrace_time;
float retraceSpeedYfl = 1.0f / (float)(_vertical_retrace_time);
float lengths[4];
lengths[0] = sqrtf(scanSpeedXfl*scanSpeedXfl + scanSpeedYfl*scanSpeedYfl);
lengths[kRetraceXMask] = sqrtf(retraceSpeedXfl*retraceSpeedXfl + scanSpeedYfl*scanSpeedYfl);
lengths[kRetraceXMask | kRetraceYMask] = sqrtf(retraceSpeedXfl*retraceSpeedXfl + retraceSpeedYfl*retraceSpeedYfl);
lengths[kRetraceYMask] = sqrtf(scanSpeedXfl*scanSpeedXfl + retraceSpeedYfl*retraceSpeedYfl);
// width should be 1.0 / _height_of_display, rotated to match the direction
float angle = atan2f(scanSpeedYfl, scanSpeedXfl);
float halfLineWidth = (float)_height_of_display * 2.0f;
_widths[0][0] = (sinf(angle) / halfLineWidth) * UINT32_MAX;
_widths[0][1] = (cosf(angle) / halfLineWidth) * UINT32_MAX;
// generate buffers for signal storage as requested — format is
// number of buffers, size of buffer 1, size of buffer 2...
const int bufferWidth = 512;
const int bufferHeight = 512;
for(int frame = 0; frame < 3; frame++)
{
va_list va;
va_start(va, number_of_buffers);
_frame_builders[frame] = new CRTFrameBuilder(bufferWidth, bufferHeight, number_of_buffers, va);
va_end(va);
}
_frames_with_delegate = 0;
_frame_read_pointer = 0;
_current_frame_builder = _frame_builders[0];
// reset raster position
_rasterPosition.x = _rasterPosition.y = 0;
// reset flywheel sync
_expected_next_hsync = _cycles_per_line;
_horizontal_counter = 0;
// reset the vertical charge capacitor
_sync_capacitor_charge_level = 0;
// start off not in horizontal sync, not receiving a sync signal
_is_receiving_sync = false;
_is_in_hsync = false;
_vretrace_counter = 0;
}
CRT::~CRT()
{
for(int frame = 0; frame < 3; frame++)
{
delete _frame_builders[frame];
}
}
#pragma mark - Sync loop
CRT::SyncEvent CRT::next_vertical_sync_event(bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced)
{
SyncEvent proposedEvent = SyncEvent::None;
int proposedSyncTime = cycles_to_run_for;
// have we overrun the maximum permitted number of horizontal syncs for this frame?
// if (!_vretrace_counter)
// {
// float raster_distance = _scanSpeed.y * proposedSyncTime;
// if(_rasterPosition.y < 1.02f && _rasterPosition.y + raster_distance >= 1.02f) {
// proposedSyncTime = (int)(1.02f - _rasterPosition.y) / _scanSpeed.y;
// proposedEvent = SyncEvent::StartVSync;
// }
// }
// will an acceptable vertical sync be triggered?
if (vsync_is_charging && !_vretrace_counter) {
if (_sync_capacitor_charge_level < _sync_capacitor_charge_threshold && _sync_capacitor_charge_level + proposedSyncTime >= _sync_capacitor_charge_threshold) {
proposedSyncTime = _sync_capacitor_charge_threshold - _sync_capacitor_charge_level;
proposedEvent = SyncEvent::StartVSync;
}
}
// will an ongoing vertical sync end?
if (_vretrace_counter > 0) {
if (_vretrace_counter < proposedSyncTime) {
proposedSyncTime = _vretrace_counter;
proposedEvent = SyncEvent::EndVSync;
}
}
*cycles_advanced = proposedSyncTime;
return proposedEvent;
}
CRT::SyncEvent CRT::next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced)
{
// do we recognise this hsync, thereby adjusting future time expectations?
if(hsync_is_requested) {
if (_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) {
_did_detect_hsync = true;
int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter;
_expected_next_hsync = (_expected_next_hsync + time_now) >> 1;
}
}
SyncEvent proposedEvent = SyncEvent::None;
int proposedSyncTime = cycles_to_run_for;
// will we end an ongoing hsync?
if (_horizontal_counter < _horizontal_retrace_time && _horizontal_counter+proposedSyncTime >= _horizontal_retrace_time) {
proposedSyncTime = _horizontal_retrace_time - _horizontal_counter;
proposedEvent = SyncEvent::EndHSync;
}
// will we start an hsync?
if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) {
proposedSyncTime = _expected_next_hsync - _horizontal_counter;
proposedEvent = SyncEvent::StartHSync;
}
*cycles_advanced = proposedSyncTime;
return proposedEvent;
}
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const Type type, const char *data_type)
{
number_of_cycles *= _time_multiplier;
bool is_output_run = ((type == Type::Level) || (type == Type::Data));
uint16_t tex_x = 0;
uint16_t tex_y = 0;
if(is_output_run && _current_frame_builder) {
tex_x = _current_frame_builder->_write_x_position;
tex_y = _current_frame_builder->_write_y_position;
}
while(number_of_cycles) {
int time_until_vertical_sync_event, time_until_horizontal_sync_event;
SyncEvent next_vertical_sync_event = this->next_vertical_sync_event(vsync_charging, number_of_cycles, &time_until_vertical_sync_event);
SyncEvent next_horizontal_sync_event = this->next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
hsync_requested = false;
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
uint16_t *next_run = (is_output_run && _current_frame_builder && next_run_length) ? _current_frame_builder->get_next_run() : nullptr;
// int lengthMask = (_is_in_hsync ? kRetraceXMask : 0) | ((_vretrace_counter > 0) ? kRetraceXMask : 0);
// uint32_t *width = _widths[lengthMask];
uint32_t *width = _widths[0];
if(next_run)
{
// set the type, initial raster position and type of this run
next_run[0] = next_run[20] = (_rasterPosition.x + width[0]) >> 16;
next_run[1] = next_run[21] = (_rasterPosition.y + width[1]) >> 16;
next_run[4] = (_rasterPosition.x - width[0]) >> 16;
next_run[5] = (_rasterPosition.y - width[1]) >> 16;
next_run[2] = next_run[6] = next_run[22] = tex_x;
next_run[3] = next_run[7] = next_run[23] = tex_y;
}
// advance the raster position as dictated by current sync status
if (_is_in_hsync)
_rasterPosition.x = (uint32_t)std::max((int64_t)0, (int64_t)_rasterPosition.x - number_of_cycles * (int64_t)_retraceSpeed.x);
else
_rasterPosition.x = (uint32_t)std::min((int64_t)UINT32_MAX, (int64_t)_rasterPosition.x + number_of_cycles * (int64_t)_scanSpeed.x);
if (_vretrace_counter > 0)
_rasterPosition.y = (uint32_t)std::max((int64_t)0, (int64_t)_rasterPosition.y - number_of_cycles * (int64_t)_retraceSpeed.y);
else
_rasterPosition.y = (uint32_t)std::min((int64_t)UINT32_MAX, (int64_t)_rasterPosition.y + number_of_cycles * (int64_t)_scanSpeed.y);
if(next_run)
{
// store the final raster position
next_run[8] = (_rasterPosition.x - width[0]) >> 16;
next_run[9] = (_rasterPosition.y - width[1]) >> 16;
next_run[12] = (_rasterPosition.x - width[0]) >> 16;
next_run[13] = (_rasterPosition.y - width[1]) >> 16;
next_run[16] = (_rasterPosition.x + width[0]) >> 16;
next_run[17] = (_rasterPosition.y + width[1]) >> 16;
// if this is a data run then advance the buffer pointer
if(type == Type::Data) tex_x += next_run_length / _time_multiplier;
// if this is a data or level run then store the end point
next_run[10] = next_run[14] = next_run[18] = tex_x;
next_run[11] = next_run[15] = next_run[19] = tex_y;
}
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
_horizontal_counter += next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if (vsync_charging)
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0);
// decrement the vertical retrace counter, making sure it stops at 0
_vretrace_counter = std::max(_vretrace_counter - next_run_length, 0);
// react to the incoming event...
if(next_run_length == time_until_horizontal_sync_event)
{
switch(next_horizontal_sync_event)
{
// start of hsync: zero the scanline counter, note that we're now in
// horizontal sync, increment the lines-in-this-frame counter
case SyncEvent::StartHSync:
_horizontal_counter = 0;
_is_in_hsync = true;
break;
// end of horizontal sync: update the flywheel's velocity, note that we're no longer
// in horizontal sync
case SyncEvent::EndHSync:
if (!_did_detect_hsync) {
_expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1;
}
_did_detect_hsync = false;
_is_in_hsync = false;
break;
default: break;
}
}
if(next_run_length == time_until_vertical_sync_event)
{
switch(next_vertical_sync_event)
{
// start of vertical sync: reset the lines-in-this-frame counter,
// load the retrace counter with the amount of time it'll take to retrace
case SyncEvent::StartVSync:
_vretrace_counter = _vertical_retrace_time;
break;
// end of vertical sync: tell the delegate that we finished vertical sync,
// releasing all runs back into the common pool
case SyncEvent::EndVSync:
if(_delegate && _current_frame_builder)
{
_current_frame_builder->complete();
_frames_with_delegate++;
_delegate->crt_did_end_frame(this, &_current_frame_builder->frame);
}
if(_frames_with_delegate < kCRTNumberOfFrames)
{
_frame_read_pointer = (_frame_read_pointer + 1)%kCRTNumberOfFrames;
_current_frame_builder = _frame_builders[_frame_read_pointer];
_current_frame_builder->reset();
}
else
_current_frame_builder = nullptr;
break;
default: break;
}
}
}
}
void CRT::return_frame()
{
_frames_with_delegate--;
}
#pragma mark - delegate
void CRT::set_delegate(CRTDelegate *delegate)
{
_delegate = delegate;
}
#pragma mark - stream feeding methods
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(int number_of_cycles)
{
bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice
_is_receiving_sync = true;
advance_cycles(number_of_cycles, _hsync_requested, true, Type::Sync, nullptr);
}
void CRT::output_blank(int number_of_cycles)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, Type::Blank, nullptr);
}
void CRT::output_level(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, Type::Level, type);
}
void CRT::output_data(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, Type::Data, type);
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(int required_length)
{
if(_current_frame_builder) _current_frame_builder->allocate_write_area(required_length);
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
if (!_current_frame_builder) return nullptr;
return _current_frame_builder->get_write_target_for_buffer(buffer);
}
#pragma mark - CRTFrame
CRTFrameBuilder::CRTFrameBuilder(int width, int height, int number_of_buffers, va_list buffer_sizes)
{
frame.size.width = width;
frame.size.height = height;
frame.number_of_buffers = number_of_buffers;
frame.buffers = new CRTBuffer[number_of_buffers];
for(int buffer = 0; buffer < number_of_buffers; buffer++)
{
frame.buffers[buffer].depth = va_arg(buffer_sizes, int);
frame.buffers[buffer].data = new uint8_t[width * height * frame.buffers[buffer].depth];
}
reset();
}
CRTFrameBuilder::~CRTFrameBuilder()
{
for(int buffer = 0; buffer < frame.number_of_buffers; buffer++)
delete[] frame.buffers[buffer].data;
delete frame.buffers;
}
void CRTFrameBuilder::reset()
{
frame.number_of_runs = 0;
_next_write_x_position = _next_write_y_position = 0;
frame.dirty_size.width = frame.dirty_size.height = 0;
}
void CRTFrameBuilder::complete()
{
frame.runs = &_all_runs[0];
}
uint16_t *CRTFrameBuilder::get_next_run()
{
// get a run from the allocated list, allocating more if we're about to overrun
if(frame.number_of_runs * 24 >= _all_runs.size())
{
_all_runs.resize(_all_runs.size() + 2400);
}
uint16_t *next_run = &_all_runs[frame.number_of_runs * 24];
frame.number_of_runs++;
return next_run;
}
void CRTFrameBuilder::allocate_write_area(int required_length)
{
if (_next_write_x_position + required_length > frame.size.width)
{
_next_write_x_position = 0;
_next_write_y_position = (_next_write_y_position+1)&(frame.size.height-1);
frame.dirty_size.height++;
}
_write_target_pointer = (_write_y_position * frame.size.width) + _write_x_position;
_write_x_position = _next_write_x_position;
_write_y_position = _next_write_y_position;
_next_write_x_position += required_length;
frame.dirty_size.width = std::max(frame.dirty_size.width, _next_write_x_position);
}
uint8_t *CRTFrameBuilder::get_write_target_for_buffer(int buffer)
{
return &frame.buffers[buffer].data[_write_target_pointer * frame.buffers[buffer].depth];
}