1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 03:32:32 +00:00
CLK/Machines/Atari/ST/Video.cpp
2019-11-09 15:31:41 -05:00

501 lines
16 KiB
C++

//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
#include "../../../Outputs/Log.hpp"
#include <algorithm>
using namespace Atari::ST;
namespace {
/*!
Defines the line counts at which mode-specific events will occur:
vertical enable being set and being reset, and the line on which
the frame will end.
*/
const struct VerticalParams {
const int set_enable;
const int reset_enable;
const int height;
} vertical_params[3] = {
{63, 263, 313}, // 47 rather than 63 on early machines.
{34, 234, 263},
{1, 401, 500} // 72 Hz mode: who knows?
};
/// @returns The correct @c VerticalParams for output at @c frequency.
const VerticalParams &vertical_parameters(FieldFrequency frequency) {
return vertical_params[int(frequency)];
}
/*!
Defines the horizontal counts at which mode-specific events will occur:
horizontal enable being set and being reset, blank being set and reset, and the
intended length of this ine.
The caller should:
* latch line length at cycle 54 (TODO: also for 72Hz mode?);
* at (line length - 50), start sync and reset enable (usually for the second time);
* at (line length - 10), disable sync.
*/
const struct HorizontalParams {
const int set_enable;
const int reset_enable;
const int set_blank;
const int reset_blank;
const int length;
} horizontal_params[3] = {
{56*2, 376*2, 450*2, 28*2, 512*2},
{52*2, 372*2, 450*2, 24*2, 508*2},
{4*2, 164*2, 184*2, 2*2, 224*2}
};
const HorizontalParams &horizontal_parameters(FieldFrequency frequency) {
return horizontal_params[int(frequency)];
}
#ifndef NDEBUG
struct Checker {
Checker() {
for(int c = 0; c < 3; ++c) {
// Expected horizontal order of events: reset blank, enable display, disable display, enable blank (at least 50 before end of line), end of line
const auto horizontal = horizontal_parameters(FieldFrequency(c));
assert(horizontal.reset_blank < horizontal.set_enable);
assert(horizontal.set_enable < horizontal.reset_enable);
assert(horizontal.reset_enable < horizontal.set_blank);
assert(horizontal.set_blank+50 < horizontal.length);
// Expected vertical order of events: reset blank, enable display, disable display, enable blank (at least 50 before end of line), end of line
const auto vertical = vertical_parameters(FieldFrequency(c));
assert(vertical.set_enable < vertical.reset_enable);
assert(vertical.reset_enable < vertical.height);
}
}
} checker;
#endif
}
Video::Video() :
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4) {
// Show a total of 260 lines; a little short for PAL but a compromise between that and the ST's
// usual output height of 200 lines.
crt_.set_visible_area(crt_.get_rect_for_area(33, 260, 188, 850, 4.0f / 3.0f));
}
void Video::set_ram(uint16_t *ram, size_t size) {
ram_ = ram;
}
void Video::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
void Video::run_for(HalfCycles duration) {
const auto horizontal_timings = horizontal_parameters(field_frequency_);
const auto vertical_timings = vertical_parameters(field_frequency_);
int integer_duration = int(duration.as_integral());
while(integer_duration) {
// Seed next event to end of line.
int next_event = line_length_;
// Check the explicitly-placed events.
if(horizontal_timings.reset_blank > x_) next_event = std::min(next_event, horizontal_timings.reset_blank);
if(horizontal_timings.set_blank > x_) next_event = std::min(next_event, horizontal_timings.set_blank);
if(horizontal_timings.reset_enable > x_) next_event = std::min(next_event, horizontal_timings.reset_enable);
if(horizontal_timings.set_enable > x_) next_event = std::min(next_event, horizontal_timings.set_enable);
// Check for events that are relative to existing latched state.
if(line_length_ - 50*2 > x_) next_event = std::min(next_event, line_length_ - 50*2);
if(line_length_ - 10*2 > x_) next_event = std::min(next_event, line_length_ - 10*2);
// Also, a vertical sync event might intercede.
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && x_ < 30*2 && next_event >= 30*2) {
next_event = 30*2;
}
// Determine current output mode and number of cycles to output for.
const int run_length = std::min(integer_duration, next_event - x_);
enum class OutputMode {
Sync, Blank, Border, Pixels
} output_mode;
if(horizontal_.sync || vertical_.sync) {
// Output sync.
output_mode = OutputMode::Sync;
} else if(horizontal_.blank || vertical_.blank) {
// Output blank.
output_mode = OutputMode::Blank;
} else if(!vertical_.enable) {
// There can be no pixels this line, just draw border.
output_mode = OutputMode::Border;
} else {
output_mode = horizontal_.enable ? OutputMode::Pixels : OutputMode::Border;
}
switch(output_mode) {
case OutputMode::Sync:
pixel_buffer_.flush(crt_);
crt_.output_sync(run_length);
break;
case OutputMode::Blank:
data_latch_position_ = 0;
pixel_buffer_.flush(crt_);
crt_.output_blank(run_length);
break;
case OutputMode::Border: {
if(!output_shifter_) {
pixel_buffer_.flush(crt_);
output_border(run_length);
} else {
if(run_length < 32) {
shift_out(run_length); // TODO: this might end up overrunning.
if(!output_shifter_) pixel_buffer_.flush(crt_);
} else {
shift_out(32);
output_shifter_ = 0;
pixel_buffer_.flush(crt_);
output_border(run_length - 32);
}
}
} break;
default: {
// There will be pixels this line, subject to the shifter pipeline.
// Divide into 8-[half-]cycle windows; at the start of each window fetch a word,
// and during the rest of the window, shift out.
int start_column = x_ >> 3;
const int end_column = (x_ + run_length) >> 3;
// Rules obeyed below:
//
// Video fetches occur as the first act of business in a column. Each
// fetch is then followed by 8 shift clocks. Whether or not the shifter
// was reloaded by the fetch depends on the FIFO.
if(start_column == end_column) {
shift_out(run_length);
} else {
// Continue the current column if partway across.
if(x_&7) {
// If at least one column boundary is crossed, complete this column.
// Otherwise the run_length is clearly less than 8 and within this column,
// so go for the entirety of it.
shift_out(8 - (x_ & 7));
++start_column;
latch_word();
}
// Run for all columns that have their starts in this time period.
int complete_columns = end_column - start_column;
while(complete_columns--) {
shift_out(8);
latch_word();
}
// Output the start of the next column, if necessary.
if(start_column != end_column && (x_ + run_length) & 7) {
shift_out((x_ + run_length) & 7);
}
}
} break;
}
// Check for whether line length should have been latched during this run.
if(x_ <= 54*2 && (x_ + run_length) > 54*2) line_length_ = horizontal_timings.length;
// Make a decision about vertical state on cycle 502.
if(x_ <= 502*2 && (x_ + run_length) > 502*2) {
next_y_ = y_ + 1;
next_vertical_ = vertical_;
next_vertical_.sync_schedule = VerticalState::SyncSchedule::None;
// Use vertical_parameters to get parameters for the current output frequency.
if(next_y_ == vertical_timings.set_enable) {
next_vertical_.enable = true;
} else if(next_y_ == vertical_timings.reset_enable) {
next_vertical_.enable = false;
} else if(next_y_ == vertical_timings.height) {
next_y_ = 0;
next_vertical_.sync_schedule = VerticalState::SyncSchedule::Begin;
current_address_ = base_address_ >> 1;
} else if(next_y_ == 3) {
next_vertical_.sync_schedule = VerticalState::SyncSchedule::End;
}
}
// Apply the next event.
x_ += run_length;
integer_duration -= run_length;
// Check horizontal events.
if(horizontal_timings.reset_blank == x_) horizontal_.blank = false;
else if(horizontal_timings.set_blank == x_) horizontal_.blank = true;
else if(horizontal_timings.reset_enable == x_) horizontal_.enable = false;
else if(horizontal_timings.set_enable == x_) horizontal_.enable = true;
else if(line_length_ - 50*2 == x_) horizontal_.sync = true;
else if(line_length_ - 10*2 == x_) horizontal_.sync = false;
// Check vertical events.
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && x_ == 30*2) {
vertical_.sync = vertical_.sync_schedule == VerticalState::SyncSchedule::Begin;
vertical_.enable &= !vertical_.sync;
}
// Check whether the terminating event was end-of-line; if so then advance
// the vertical bits of state.
if(x_ == line_length_) {
x_ = 0;
vertical_ = next_vertical_;
y_ = next_y_;
}
}
}
void Video::latch_word() {
data_latch_[data_latch_position_] = ram_[current_address_ & 262143];
++current_address_;
++data_latch_position_;
if(data_latch_position_ == 4) {
data_latch_position_ = 0;
output_shifter_ =
(uint64_t(data_latch_[0]) << 48) |
(uint64_t(data_latch_[1]) << 32) |
(uint64_t(data_latch_[2]) << 16) |
uint64_t(data_latch_[3]);
}
}
void Video::shift_out(int length) {
if(pixel_buffer_.output_bpp != output_bpp_) {
pixel_buffer_.flush(crt_);
}
if(!pixel_buffer_.pixel_pointer) {
pixel_buffer_.allocate(crt_);
pixel_buffer_.output_bpp = output_bpp_;
}
pixel_buffer_.cycles_output += length;
switch(output_bpp_) {
case OutputBpp::One: {
int pixels = length << 1;
pixel_buffer_.pixels_output += pixels;
if(pixel_buffer_.pixel_pointer) {
while(pixels--) {
*pixel_buffer_.pixel_pointer = ((output_shifter_ >> 63) & 1) * 0xffff;
output_shifter_ <<= 1;
++pixel_buffer_.pixel_pointer;
}
} else {
output_shifter_ <<= pixels;
}
} break;
case OutputBpp::Two: {
pixel_buffer_.pixels_output += length;
#if TARGET_RT_BIG_ENDIAN
const int upper = 0;
#else
const int upper = 1;
#endif
if(pixel_buffer_.pixel_pointer) {
while(length--) {
*pixel_buffer_.pixel_pointer = palette_[
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2)
];
// This ensures that the top two words shift one to the left;
// their least significant bits are fed from the most significant bits
// of the bottom two words, respectively.
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
++pixel_buffer_.pixel_pointer;
}
} else {
while(length--) {
shifter_halves_[upper] = (shifter_halves_[upper] << 1) & 0xfffefffe;
shifter_halves_[upper] |= (shifter_halves_[upper^1] & 0x80008000) >> 15;
shifter_halves_[upper^1] = (shifter_halves_[upper^1] << 1) & 0xfffefffe;
}
}
} break;
default:
case OutputBpp::Four:
assert(!(length & 1));
pixel_buffer_.pixels_output += length >> 1;
if(pixel_buffer_.pixel_pointer) {
while(length) {
*pixel_buffer_.pixel_pointer = palette_[
((output_shifter_ >> 63) & 1) |
((output_shifter_ >> 46) & 2) |
((output_shifter_ >> 29) & 4) |
((output_shifter_ >> 12) & 8)
];
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
++pixel_buffer_.pixel_pointer;
length -= 2;
}
} else {
while(length) {
output_shifter_ = (output_shifter_ << 1) & 0xfffefffefffefffe;
length -= 2;
}
}
break;
}
// Check for buffer being full. Buffers are allocated as 328 pixels, and this method is
// never called for more than 8 pixels, so there's no chance of overrun.
if(pixel_buffer_.pixel_pointer && pixel_buffer_.pixels_output >= 320)
pixel_buffer_.flush(crt_);
}
void Video::output_border(int duration) {
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = palette_[0];
crt_.output_level(duration);
}
bool Video::hsync() {
return horizontal_.sync;
}
bool Video::vsync() {
return vertical_.sync;
}
bool Video::display_enabled() {
return horizontal_.enable && vertical_.enable;
}
HalfCycles Video::get_next_sequence_point() {
// The next sequence point will be whenever display_enabled, vsync or hsync next changes.
// Sequence of events within a standard line:
//
// 1) blank disabled;
// 2) display enabled;
// 3) display disabled;
// 4) blank enabled;
// 5) sync enabled;
// 6) sync disabled;
// 7) end-of-line, potential vertical event.
//
// If this line has a vertical sync event on it, there will also be an event at cycle 30,
// which will always falls somewhere between (1) and (4) but might or might not be in the
// visible area.
const auto horizontal_timings = horizontal_parameters(field_frequency_);
// const auto vertical_timings = vertical_parameters(field_frequency_);
// If this is a vertically-enabled line, check for the display enable boundaries.
if(vertical_.enable) {
// TODO: what if there's a sync event scheduled for this line?
if(x_ < horizontal_timings.set_enable) return HalfCycles(horizontal_timings.set_enable - x_);
if(x_ < horizontal_timings.reset_enable) return HalfCycles(horizontal_timings.reset_enable - x_);
} else {
if(vertical_.sync_schedule != VerticalState::SyncSchedule::None && (x_ < 30*2)) {
return HalfCycles(30*2 - x_);
}
}
// Test for beginning and end of sync.
if(x_ < line_length_ - 50) return HalfCycles(line_length_ - 50 - x_);
if(x_ < line_length_ - 10) return HalfCycles(line_length_ - 10 - x_);
// Okay, then, it depends on the next line. If the next line is the start or end of vertical sync,
// it's that.
// if(y_+1 == vertical_timings.height || y_+1 == 3) return HalfCycles(line_length_ - x_);
// It wasn't any of those, so as a temporary expedient, just supply end of line.
return HalfCycles(line_length_ - x_);
}
// MARK: - IO dispatch
uint16_t Video::read(int address) {
address &= 0x3f;
switch(address) {
default:
break;
case 0x00: return uint16_t(0xff00 | (base_address_ >> 16));
case 0x01: return uint16_t(0xff00 | (base_address_ >> 8));
case 0x02: return uint16_t(0xff00 | (current_address_ >> 15)); // Current address is kept in word precision internally;
case 0x03: return uint16_t(0xff00 | (current_address_ >> 7)); // the shifts here represent a conversion back to
case 0x04: return uint16_t(0xff00 | (current_address_ << 1)); // byte precision.
case 0x05: return sync_mode_ | 0xfcff;
case 0x30: return video_mode_ | 0xfcff;
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: return raw_palette_[address - 0x20];
}
return 0xff;
}
void Video::write(int address, uint16_t value) {
address &= 0x3f;
switch(address) {
default: break;
// Start address.
case 0x00: base_address_ = (base_address_ & 0x00ffff) | ((value & 0xff) << 16); break;
case 0x01: base_address_ = (base_address_ & 0xff00ff) | ((value & 0xff) << 8); break;
// Sync mode and pixel mode.
case 0x05:
sync_mode_ = value;
update_output_mode();
break;
case 0x30:
video_mode_ = value;
update_output_mode();
break;
// Palette.
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: {
raw_palette_[address - 0x20] = value;
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[address - 0x20]);
entry[0] = uint8_t((value & 0x700) >> 7);
entry[1] = uint8_t((value & 0x77) << 1);
} break;
}
}
void Video::update_output_mode() {
// If this is black and white mode, that's that.
switch((video_mode_ >> 8) & 3) {
default:
case 0: output_bpp_ = OutputBpp::Four; break;
case 1: output_bpp_ = OutputBpp::Two; break;
// 1bpp mode ignores the otherwise-programmed frequency.
case 2:
output_bpp_ = OutputBpp::One;
field_frequency_ = FieldFrequency::SeventyTwo;
return;
}
field_frequency_ = (sync_mode_ & 0x200) ? FieldFrequency::Fifty : FieldFrequency::Sixty;
}