mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-11 08:30:55 +00:00
547 lines
14 KiB
Plaintext
547 lines
14 KiB
Plaintext
//
|
|
// ARMDecoderTests.m
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 16/02/2024.
|
|
// Copyright 2024 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#import <XCTest/XCTest.h>
|
|
|
|
#include "../../../InstructionSets/ARM/Disassembler.hpp"
|
|
#include "../../../InstructionSets/ARM/Executor.hpp"
|
|
|
|
#include "NSData+dataWithContentsOfGZippedFile.h"
|
|
|
|
#include <map>
|
|
#include <sstream>
|
|
|
|
using namespace InstructionSet::ARM;
|
|
|
|
namespace {
|
|
|
|
struct MemoryLedger {
|
|
template <typename IntT>
|
|
bool write(uint32_t address, IntT source, Mode, bool) {
|
|
const auto is_faulty = [&](uint32_t address) -> bool {
|
|
return
|
|
write_pointer == writes.size() ||
|
|
writes[write_pointer].size != sizeof(IntT) ||
|
|
writes[write_pointer].address != address ||
|
|
writes[write_pointer].value != source;
|
|
};
|
|
|
|
// The test set sometimes worries about write alignment, sometimes not...
|
|
if(is_faulty(address) && is_faulty(address & static_cast<uint32_t>(~3))) {
|
|
return false;
|
|
}
|
|
++write_pointer;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntT>
|
|
bool read(uint32_t address, IntT &source, Mode, bool) {
|
|
const auto is_faulty = [&](uint32_t address) -> bool {
|
|
return
|
|
read_pointer == reads.size() ||
|
|
reads[read_pointer].size != sizeof(IntT) ||
|
|
reads[read_pointer].address != address;
|
|
};
|
|
|
|
// As per writes; the test set sometimes forces alignment on the record, sometimes not...
|
|
if(is_faulty(address) && is_faulty(address & static_cast<uint32_t>(~3))) {
|
|
return false;
|
|
}
|
|
source = reads[read_pointer].value;
|
|
++read_pointer;
|
|
return true;
|
|
}
|
|
|
|
struct Access {
|
|
size_t size;
|
|
uint32_t address;
|
|
uint32_t value;
|
|
};
|
|
|
|
template <typename IntT>
|
|
void add_access(bool is_read, uint32_t address, IntT value) {
|
|
auto &read = is_read ? reads.emplace_back() : writes.emplace_back();
|
|
read.address = address;
|
|
read.value = value;
|
|
read.size = sizeof(IntT);
|
|
}
|
|
|
|
std::vector<Access> reads;
|
|
std::vector<Access> writes;
|
|
size_t read_pointer = 0;
|
|
size_t write_pointer = 0;
|
|
};
|
|
|
|
}
|
|
|
|
@interface ARMDecoderTests : XCTestCase
|
|
@end
|
|
|
|
@implementation ARMDecoderTests
|
|
|
|
- (void)testBarrelShifterLogicalLeft {
|
|
uint32_t value;
|
|
uint32_t carry;
|
|
|
|
// Test a shift by 1 into carry.
|
|
value = 0x8000'0000;
|
|
shift<ShiftType::LogicalLeft, true, true>(value, 1, carry);
|
|
XCTAssertEqual(value, 0);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a shift by 18 into carry.
|
|
value = 0x0000'4001;
|
|
shift<ShiftType::LogicalLeft, true, true>(value, 18, carry);
|
|
XCTAssertEqual(value, 0x4'0000);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a shift by 17, not generating carry.
|
|
value = 0x0000'4001;
|
|
shift<ShiftType::LogicalLeft, true, true>(value, 17, carry);
|
|
XCTAssertEqual(value, 0x8002'0000);
|
|
XCTAssertEqual(carry, 0);
|
|
}
|
|
|
|
- (void)testBarrelShifterLogicalRight {
|
|
uint32_t value;
|
|
uint32_t carry;
|
|
|
|
// Test successive shifts by 4; one generating carry and one not.
|
|
value = 0x12345678;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 4, carry);
|
|
XCTAssertEqual(value, 0x1234567);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
shift<ShiftType::LogicalRight, true, true>(value, 4, carry);
|
|
XCTAssertEqual(value, 0x123456);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test shift by 1.
|
|
value = 0x8003001;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 1, carry);
|
|
XCTAssertEqual(value, 0x4001800);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a shift by greater than 32.
|
|
value = 0xffff'ffff;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 33, carry);
|
|
XCTAssertEqual(value, 0);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test shifts by 32: result is always 0, carry is whatever was in bit 31.
|
|
value = 0xffff'ffff;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 32, carry);
|
|
XCTAssertEqual(value, 0);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
value = 0x7fff'ffff;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 32, carry);
|
|
XCTAssertEqual(value, 0);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test that a logical right shift by 0 is the same as a shift by 32.
|
|
value = 0xffff'ffff;
|
|
shift<ShiftType::LogicalRight, true, true>(value, 0, carry);
|
|
XCTAssertEqual(value, 0);
|
|
XCTAssertNotEqual(carry, 0);
|
|
}
|
|
|
|
- (void)testBarrelShifterArithmeticRight {
|
|
uint32_t value;
|
|
uint32_t carry;
|
|
|
|
// Test a short negative shift.
|
|
value = 0x8000'0030;
|
|
shift<ShiftType::ArithmeticRight, true, true>(value, 1, carry);
|
|
XCTAssertEqual(value, 0xc000'0018);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test a medium negative shift without carry.
|
|
value = 0xffff'0000;
|
|
shift<ShiftType::ArithmeticRight, true, true>(value, 11, carry);
|
|
XCTAssertEqual(value, 0xffff'ffe0);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test a medium negative shift with carry.
|
|
value = 0xffc0'0000;
|
|
shift<ShiftType::ArithmeticRight, true, true>(value, 23, carry);
|
|
XCTAssertEqual(value, 0xffff'ffff);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a long negative shift.
|
|
value = 0x8000'0000;
|
|
shift<ShiftType::ArithmeticRight, true, true>(value, 32, carry);
|
|
XCTAssertEqual(value, 0xffff'ffff);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a positive shift.
|
|
value = 0x0123'0031;
|
|
shift<ShiftType::ArithmeticRight, true, true>(value, 3, carry);
|
|
XCTAssertEqual(value, 0x24'6006);
|
|
XCTAssertEqual(carry, 0);
|
|
}
|
|
|
|
- (void)testBarrelShifterRotateRight {
|
|
uint32_t value;
|
|
uint32_t carry;
|
|
|
|
// Test a short rotate by one hex digit.
|
|
value = 0xabcd'1234;
|
|
shift<ShiftType::RotateRight, true, true>(value, 4, carry);
|
|
XCTAssertEqual(value, 0x4abc'd123);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test a longer rotate, with carry.
|
|
value = 0xa5f9'6342;
|
|
shift<ShiftType::RotateRight, true, true>(value, 17, carry);
|
|
XCTAssertEqual(value, 0xb1a1'52fc);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a rotate by 32 without carry.
|
|
value = 0x385f'7dce;
|
|
shift<ShiftType::RotateRight, true, true>(value, 32, carry);
|
|
XCTAssertEqual(value, 0x385f'7dce);
|
|
XCTAssertEqual(carry, 0);
|
|
|
|
// Test a rotate by 32 with carry.
|
|
value = 0xfecd'ba12;
|
|
shift<ShiftType::RotateRight, true, true>(value, 32, carry);
|
|
XCTAssertEqual(value, 0xfecd'ba12);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a rotate through carry, carry not set.
|
|
value = 0x123f'abcf;
|
|
carry = 0;
|
|
shift<ShiftType::RotateRight, true, true>(value, 0, carry);
|
|
XCTAssertEqual(value, 0x091f'd5e7);
|
|
XCTAssertNotEqual(carry, 0);
|
|
|
|
// Test a rotate through carry, carry set.
|
|
value = 0x123f'abce;
|
|
carry = 1;
|
|
shift<ShiftType::RotateRight, true, true>(value, 0, carry);
|
|
XCTAssertEqual(value, 0x891f'd5e7);
|
|
XCTAssertEqual(carry, 0);
|
|
}
|
|
|
|
- (void)testRegisterModes {
|
|
Registers r;
|
|
|
|
// Set all user mode registers to their indices.
|
|
r.set_mode(Mode::User);
|
|
for(int c = 0; c < 15; c++) {
|
|
r[c] = c;
|
|
}
|
|
|
|
// Set FIQ registers.
|
|
r.set_mode(Mode::FIQ);
|
|
for(int c = 8; c < 15; c++) {
|
|
r[c] = c | 0x100;
|
|
}
|
|
|
|
// Set IRQ registers.
|
|
r.set_mode(Mode::IRQ);
|
|
for(int c = 13; c < 15; c++) {
|
|
r[c] = c | 0x200;
|
|
}
|
|
|
|
// Set supervisor registers.
|
|
r.set_mode(Mode::FIQ);
|
|
r.set_mode(Mode::User);
|
|
r.set_mode(Mode::Supervisor);
|
|
for(int c = 13; c < 15; c++) {
|
|
r[c] = c | 0x300;
|
|
}
|
|
|
|
// Check all results.
|
|
r.set_mode(Mode::User);
|
|
r.set_mode(Mode::FIQ);
|
|
for(int c = 0; c < 8; c++) {
|
|
XCTAssertEqual(r[c], c);
|
|
}
|
|
for(int c = 8; c < 15; c++) {
|
|
XCTAssertEqual(r[c], c | 0x100);
|
|
}
|
|
|
|
r.set_mode(Mode::FIQ);
|
|
r.set_mode(Mode::IRQ);
|
|
r.set_mode(Mode::User);
|
|
r.set_mode(Mode::FIQ);
|
|
r.set_mode(Mode::Supervisor);
|
|
for(int c = 0; c < 13; c++) {
|
|
XCTAssertEqual(r[c], c);
|
|
}
|
|
for(int c = 13; c < 15; c++) {
|
|
XCTAssertEqual(r[c], c | 0x300);
|
|
}
|
|
|
|
r.set_mode(Mode::FIQ);
|
|
r.set_mode(Mode::User);
|
|
for(int c = 0; c < 15; c++) {
|
|
XCTAssertEqual(r[c], c);
|
|
}
|
|
|
|
r.set_mode(Mode::Supervisor);
|
|
r.set_mode(Mode::IRQ);
|
|
for(int c = 0; c < 13; c++) {
|
|
XCTAssertEqual(r[c], c);
|
|
}
|
|
for(int c = 13; c < 15; c++) {
|
|
XCTAssertEqual(r[c], c | 0x200);
|
|
}
|
|
}
|
|
|
|
- (void)testFlags {
|
|
Registers regs;
|
|
|
|
for(int c = 0; c < 256; c++) {
|
|
regs.set_mode(Mode::Supervisor);
|
|
|
|
const uint32_t status = ((c & 0xfc) << 26) | (c & 0x03);
|
|
regs.set_status(status);
|
|
XCTAssertEqual(status, regs.status());
|
|
}
|
|
}
|
|
|
|
- (void)testMessy {
|
|
NSData *const tests =
|
|
[NSData dataWithContentsOfGZippedFile:
|
|
[[NSBundle bundleForClass:[self class]]
|
|
pathForResource:@"test"
|
|
ofType:@"txt.gz"
|
|
inDirectory:@"Messy ARM"]
|
|
];
|
|
const std::string text((char *)tests.bytes);
|
|
std::istringstream input(text);
|
|
|
|
input >> std::hex;
|
|
|
|
static constexpr auto model = Model::ARMv2with32bitAddressing;
|
|
using Exec = Executor<model, MemoryLedger>;
|
|
std::unique_ptr<Exec> test;
|
|
|
|
struct FailureRecord {
|
|
int count = 0;
|
|
int first = 0;
|
|
NSString *sample;
|
|
};
|
|
std::map<uint32_t, FailureRecord> failures;
|
|
|
|
uint32_t opcode = 0;
|
|
bool ignore_opcode = false;
|
|
uint32_t masks[16];
|
|
uint32_t test_pc_offset = 8;
|
|
|
|
int test_count = 0;
|
|
while(!input.eof()) {
|
|
std::string label;
|
|
input >> label;
|
|
|
|
if(label == "**") {
|
|
memset(masks, 0xff, sizeof(masks));
|
|
ignore_opcode = false;
|
|
test_pc_offset = 8;
|
|
|
|
input >> opcode;
|
|
test_count = 0;
|
|
|
|
InstructionSet::ARM::Disassembler<model> disassembler;
|
|
InstructionSet::ARM::dispatch<model>(opcode, disassembler);
|
|
static constexpr uint32_t pc_address_mask = 0x03ff'fffc;
|
|
|
|
const auto instruction = disassembler.last();
|
|
switch(instruction.operation) {
|
|
case Instruction::Operation::BL:
|
|
// Tests don't multiplex flags into PC for storage to R14.
|
|
masks[14] = pc_address_mask;
|
|
break;
|
|
|
|
case Instruction::Operation::SWI:
|
|
// Tested CPU either doesn't switch into supervisor mode, or
|
|
// is sufficiently accurate in its pipeline that register
|
|
// changes haven't happened yet.
|
|
ignore_opcode = true;
|
|
break;
|
|
|
|
case Instruction::Operation::MOV:
|
|
// MOV from PC will pick up the address only in the test cases.
|
|
if(
|
|
instruction.operand2.type == Operand::Type::Register &&
|
|
instruction.operand2.value == 15
|
|
) {
|
|
masks[instruction.destination.value] = pc_address_mask;
|
|
}
|
|
|
|
// MOV to PC; there are both pipeline capture errors in the test
|
|
// set and its ARM won't change privilege level on a write to R15.
|
|
// Similarly, if the PC is operand 2 then it'll also contain the
|
|
// PSR on an ARM2 but not in the test set.
|
|
if(instruction.destination.value == 15 || instruction.operand2.value == 15) {
|
|
ignore_opcode = true;
|
|
}
|
|
break;
|
|
|
|
case Instruction::Operation::TEQ:
|
|
case Instruction::Operation::TST:
|
|
case Instruction::Operation::ORR:
|
|
case Instruction::Operation::BIC:
|
|
case Instruction::Operation::SUB:
|
|
case Instruction::Operation::ADD:
|
|
// Routinely used to change privilege level on an ARM2 but
|
|
// doesn't seem to have that effect on the ARM used to generate
|
|
// the test set.
|
|
if(instruction.destination.value == 15 || instruction.operand2.value == 15) {
|
|
ignore_opcode = true;
|
|
}
|
|
break;
|
|
|
|
case Instruction::Operation::STR:
|
|
case Instruction::Operation::LDR:
|
|
// Neither loads nor stores with R15 are matched to ARM2 behaviour by the test source.
|
|
ignore_opcode = instruction.destination.value == 15;
|
|
break;
|
|
|
|
case Instruction::Operation::STM:
|
|
case Instruction::Operation::LDM:
|
|
// If the PC is involved, just skip the test; PC/PSR differences abound.
|
|
ignore_opcode = instruction.operand1.value & (1 << 15);
|
|
break;
|
|
|
|
case Instruction::Operation::MCR:
|
|
case Instruction::Operation::MRC:
|
|
// The test case doesn't seem to throw on a missing coprocessor.
|
|
ignore_opcode = true;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if(ignore_opcode) continue;
|
|
|
|
if(label == "Before:" || label == "After:") {
|
|
// Read register state.
|
|
uint32_t regs[16];
|
|
for(int c = 0; c < 16; c++) {
|
|
input >> regs[c];
|
|
}
|
|
|
|
if(!test) test = std::make_unique<Exec>();
|
|
auto ®isters = test->registers();
|
|
if(label == "Before:") {
|
|
// This is the start of a new test.
|
|
|
|
// Establish implicit register values.
|
|
for(uint32_t c = 0; c < 15; c++) {
|
|
registers.set_mode(Mode::FIQ);
|
|
registers[c] = 0x200 | c;
|
|
|
|
registers.set_mode(Mode::Supervisor);
|
|
registers[c] = 0x300 | c;
|
|
|
|
registers.set_mode(Mode::IRQ);
|
|
registers[c] = 0x400 | c;
|
|
|
|
registers.set_mode(Mode::User);
|
|
registers[c] = 0x100 | c;
|
|
}
|
|
|
|
// Apply provided state.
|
|
registers.set_mode(Mode::Supervisor); // To make sure the actual mode is applied.
|
|
registers.set_pc(regs[15] - 8);
|
|
registers.set_status(regs[15]);
|
|
for(uint32_t c = 0; c < 15; c++) {
|
|
registers[c] = regs[c];
|
|
}
|
|
} else {
|
|
// Execute test and compare.
|
|
++test_count;
|
|
|
|
if(opcode == 0xe1a0ae2f && test_count == 2) {
|
|
printf("");
|
|
}
|
|
|
|
execute(opcode, *test);
|
|
NSMutableString *error = nil;
|
|
|
|
for(uint32_t c = 0; c < 15; c++) {
|
|
if((regs[c] & masks[c]) != (registers[c] & masks[c])) {
|
|
if(!error) error = [[NSMutableString alloc] init]; else [error appendString:@"; "];
|
|
[error appendFormat:@"R%d %08x v %08x", c, regs[c], registers[c]];
|
|
}
|
|
}
|
|
if((regs[15] & masks[15]) != (registers.pc_status(test_pc_offset) & masks[15])) {
|
|
if(!error) error = [[NSMutableString alloc] init]; else [error appendString:@"; "];
|
|
[error appendFormat:@"; PC/PSR %08x/%08x v %08x/%08x",
|
|
regs[15] & 0x03ff'fffc, regs[15] & ~0x03ff'fffc,
|
|
registers.pc(test_pc_offset), registers.status()];
|
|
}
|
|
|
|
if(error) {
|
|
++failures[opcode].count;
|
|
if(failures[opcode].count == 1) {
|
|
failures[opcode].first = test_count;
|
|
failures[opcode].sample = error;
|
|
}
|
|
}
|
|
|
|
test.reset();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// TODO: supply information below to ledger, and then use and test it.
|
|
|
|
uint32_t address;
|
|
uint32_t value;
|
|
input >> address >> value;
|
|
|
|
if(label == "r.b") {
|
|
// Capture a byte read for provision.
|
|
test->bus.add_access<uint8_t>(true, address, value);
|
|
continue;
|
|
}
|
|
|
|
if(label == "r.w") {
|
|
// Capture a word read for provision.
|
|
test->bus.add_access<uint32_t>(true, address, value);
|
|
continue;
|
|
}
|
|
|
|
if(label == "w.b") {
|
|
// Capture a byte write for comparison.
|
|
test->bus.add_access<uint8_t>(false, address, value);
|
|
continue;
|
|
}
|
|
|
|
if(label == "w.w") {
|
|
// Capture a word write for comparison.
|
|
test->bus.add_access<uint32_t>(false, address, value);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
XCTAssertTrue(failures.empty());
|
|
|
|
if(!failures.empty()) {
|
|
NSLog(@"Failed %zu instructions; examples below", failures.size());
|
|
for(const auto &pair: failures) {
|
|
NSLog(@"%08x, %d total, test %d: %@", pair.first, pair.second.count, pair.second.first, pair.second.sample);
|
|
}
|
|
}
|
|
|
|
|
|
for(const auto &pair: failures) {
|
|
printf("%08x ", pair.first);
|
|
}
|
|
}
|
|
|
|
@end
|