1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 20:31:36 +00:00
CLK/Machines/AtariST/Video.cpp
Thomas Harte f93cdd21de Reverses bit order.
So, for the first time: a green desktop.
2019-11-02 21:53:04 -04:00

265 lines
8.3 KiB
C++

//
// Video.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/10/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Video.hpp"
#include "../../Outputs/Log.hpp"
#include <algorithm>
using namespace Atari::ST;
namespace {
struct ModeParams {
const int lines_per_frame;
const int first_video_line;
const int final_video_line;
const int line_length;
const int end_of_blank;
const int start_of_display_enable;
const int end_of_display_enable;
const int start_of_output;
const int end_of_output;
const int start_of_blank;
const int start_of_hsync;
const int end_of_hsync;
} modes[3] = {
{313, 56, 256, 1024, 64, 116, 116+640, 116+48, 116+48+640, 904, 928, 1008 },
{},
{}
};
const ModeParams &mode_params_for_mode() {
// TODO: rest of potential combinations, and accept mode as a paramter.
return modes[0];
}
}
Video::Video() :
crt_(1024, 1, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4) {
}
void Video::set_ram(uint16_t *ram) {
ram_ = ram;
}
void Video::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
void Video::run_for(HalfCycles duration) {
int integer_duration = int(duration.as_integral());
const auto mode_params = mode_params_for_mode();
#define Period(lower, upper, type) \
if(x >= lower && x < upper) { \
const auto target = std::min(upper, final_x); \
type(target - x); \
x = target; \
}
// TODO: the below is **way off**. The real hardware does what you'd expect with ongoing state and
// exact equality tests. Fixes to come.
while(integer_duration) {
const int final_x = std::min(x + integer_duration, mode_params.line_length);
integer_duration -= (final_x - x);
if(y >= mode_params.first_video_line && y < mode_params.final_video_line) {
// TODO: Prior to output: collect all necessary data, obeying start_of_display_enable and end_of_display_enable.
Period(0, mode_params.end_of_blank, crt_.output_blank);
Period(mode_params.end_of_blank, mode_params.start_of_output, output_border);
if(x >= mode_params.start_of_output && x < mode_params.end_of_output) {
if(x == mode_params.start_of_output) {
// TODO: resolutions other than 320.
pixel_pointer_ = reinterpret_cast<uint16_t *>(crt_.begin_data(320));
}
const auto target = std::min(mode_params.end_of_output, final_x);
while(x < target) {
if(!(x&31) && pixel_pointer_) {
// TODO: RAM sizes other than 512kb.
uint16_t source[4] = {
ram_[(current_address_ + 0) & 262143],
ram_[(current_address_ + 1) & 262143],
ram_[(current_address_ + 2) & 262143],
ram_[(current_address_ + 3) & 262143],
};
current_address_ += 4;
for(int c = 0; c < 16; ++c) {
*pixel_pointer_ = palette_[
((source[3] >> 12) & 0x8) |
((source[2] >> 13) & 0x4) |
((source[1] >> 14) & 0x2) |
((source[0] >> 15) & 0x1)
];
source[0] <<= 1;
source[1] <<= 1;
source[2] <<= 1;
source[3] <<= 1;
++pixel_pointer_;
}
}
++x;
}
if(x == mode_params.end_of_output) {
crt_.output_data(mode_params.end_of_output - mode_params.start_of_output, 320);
pixel_pointer_ = nullptr;
}
}
Period(mode_params.end_of_output, mode_params.start_of_blank, output_border);
Period(mode_params.start_of_blank, mode_params.start_of_hsync, crt_.output_blank);
Period(mode_params.start_of_hsync, mode_params.end_of_hsync, crt_.output_sync);
Period(mode_params.end_of_hsync, mode_params.line_length, crt_.output_blank);
} else {
// Hard code the first three lines as vertical sync.
if(y < 3) {
Period(0, mode_params.start_of_hsync, crt_.output_sync);
Period(mode_params.start_of_hsync, mode_params.end_of_hsync, crt_.output_blank);
Period(mode_params.end_of_hsync, mode_params.line_length, crt_.output_sync);
} else {
Period(0, mode_params.end_of_blank, crt_.output_blank);
Period(mode_params.end_of_blank, mode_params.start_of_blank, output_border);
Period(mode_params.start_of_blank, mode_params.start_of_hsync, crt_.output_blank);
Period(mode_params.start_of_hsync, mode_params.end_of_hsync, crt_.output_sync);
Period(mode_params.end_of_hsync, mode_params.line_length, crt_.output_blank);
}
}
if(x == mode_params.line_length) {
x = 0;
y = (y + 1) % mode_params.lines_per_frame;
if(!y)
current_address_ = base_address_ >> 1;
}
}
#undef Period
}
void Video::output_border(int duration) {
uint16_t *colour_pointer = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(colour_pointer) *colour_pointer = palette_[0];
crt_.output_level(duration);
}
bool Video::hsync() {
const auto mode_params = mode_params_for_mode();
return x >= mode_params.start_of_hsync && x < mode_params.end_of_hsync;
}
bool Video::vsync() {
return y < 3;
}
bool Video::display_enabled() {
const auto mode_params = mode_params_for_mode();
return y >= mode_params.first_video_line && y < mode_params.final_video_line && x >= mode_params.start_of_display_enable && x < mode_params.end_of_display_enable;
}
HalfCycles Video::get_next_sequence_point() {
// The next hsync transition will occur either this line or the next.
const auto mode_params = mode_params_for_mode();
HalfCycles cycles_until_hsync;
if(x < mode_params.start_of_hsync) {
cycles_until_hsync = HalfCycles(mode_params.start_of_hsync - x);
} else if(x < mode_params.end_of_hsync) {
cycles_until_hsync = HalfCycles(mode_params.end_of_hsync - x);
} else {
cycles_until_hsync = HalfCycles(mode_params.start_of_hsync + mode_params.line_length - x);
}
// The next vsync transition depends purely on the current y.
HalfCycles cycles_until_vsync;
if(y < 3) {
cycles_until_vsync = HalfCycles(mode_params.line_length - x + (2 - y)*mode_params.line_length);
} else {
cycles_until_vsync = HalfCycles(mode_params.line_length - x + (mode_params.lines_per_frame - 1 - y)*mode_params.line_length);
}
// The next display enable transition will occur only in the visible area.
HalfCycles cycles_until_display_enable;
if(display_enabled()) {
cycles_until_display_enable = HalfCycles(mode_params.end_of_display_enable - x);
} else {
const auto horizontal_cycles = mode_params.start_of_display_enable - x;
int vertical_lines = 0;
if(y < mode_params.first_video_line) {
vertical_lines = mode_params.first_video_line - y;
} else if(y >= mode_params.final_video_line ) {
vertical_lines = mode_params.first_video_line + mode_params.lines_per_frame - y;
}
if(horizontal_cycles < 0) ++vertical_lines;
cycles_until_display_enable = HalfCycles(horizontal_cycles + vertical_lines * mode_params.line_length);
}
// Determine the minimum of the three
if(cycles_until_hsync < cycles_until_vsync && cycles_until_hsync < cycles_until_display_enable) {
return cycles_until_hsync;
} else {
return (cycles_until_vsync < cycles_until_display_enable) ? cycles_until_vsync : cycles_until_display_enable;
}
}
// MARK: - IO dispatch
uint16_t Video::read(int address) {
LOG("[Video] read " << PADHEX(2) << (address & 0x3f));
address &= 0x3f;
switch(address) {
default:
break;
case 0x00: return uint16_t(0xff00 | (base_address_ >> 16));
case 0x01: return uint16_t(0xff00 | (base_address_ >> 8));
case 0x02: return uint16_t(0xff00 | (current_address_ >> 16));
case 0x03: return uint16_t(0xff00 | (current_address_ >> 8));
case 0x04: return uint16_t(0xff00 | (current_address_));
case 0x30: return video_mode_ | 0xfcff;
}
return 0xff;
}
void Video::write(int address, uint16_t value) {
LOG("[Video] write " << PADHEX(2) << int(value) << " to " << PADHEX(2) << (address & 0x3f));
address &= 0x3f;
switch(address) {
default: break;
// Start address.
case 0x00: base_address_ = (base_address_ & 0x00ffff) | ((value & 0xff) << 16); break;
case 0x01: base_address_ = (base_address_ & 0xff00ff) | ((value & 0xff) << 8); break;
// Mode.
case 0x30: video_mode_ = value; break;
// Palette.
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b:
case 0x2c: case 0x2d: case 0x2e: case 0x2f: {
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[address - 0x20]);
entry[0] = uint8_t((value & 0x700) >> 7);
entry[1] = uint8_t((value & 0x77) << 1);
} break;
}
}