1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 18:31:53 +00:00
CLK/ClockReceiver/JustInTime.hpp

249 lines
8.3 KiB
C++

//
// JustInTime.hpp
// Clock Signal
//
// Created by Thomas Harte on 28/07/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#ifndef JustInTime_h
#define JustInTime_h
#include "../Concurrency/AsyncTaskQueue.hpp"
#include "ForceInline.hpp"
/*!
A JustInTimeActor holds (i) an embedded object with a run_for method; and (ii) an amount
of time since run_for was last called.
Time can be added using the += operator. The -> operator can be used to access the
embedded object. All time accumulated will be pushed to object before the pointer is returned.
Machines that accumulate HalfCycle time but supply to a Cycle-counted device may supply a
separate @c TargetTimeScale at template declaration.
If the held object implements get_next_sequence_point() then it'll be used to flush implicitly
as and when sequence points are hit. Callers can use will_flush() to predict these.
*/
template <class T, int multiplier = 1, int divider = 1, class LocalTimeScale = HalfCycles, class TargetTimeScale = LocalTimeScale> class JustInTimeActor {
private:
class SequencePointAwareDeleter {
public:
explicit SequencePointAwareDeleter(JustInTimeActor<T, multiplier, divider, LocalTimeScale, TargetTimeScale> *actor) : actor_(actor) {}
void operator ()(const T *const) const {
if constexpr (has_sequence_points<T>::value) {
actor_->update_sequence_point();
}
}
private:
JustInTimeActor<T, multiplier, divider, LocalTimeScale, TargetTimeScale> *const actor_;
};
public:
/// Constructs a new JustInTimeActor using the same construction arguments as the included object.
template<typename... Args> JustInTimeActor(Args&&... args) : object_(std::forward<Args>(args)...) {}
/// Adds time to the actor.
forceinline void operator += (LocalTimeScale rhs) {
if constexpr (multiplier != 1) {
time_since_update_ += rhs * multiplier;
} else {
time_since_update_ += rhs;
}
is_flushed_ = false;
if constexpr (has_sequence_points<T>::value) {
time_until_event_ -= rhs;
if(time_until_event_ <= LocalTimeScale(0)) {
flush();
update_sequence_point();
}
}
}
/// Flushes all accumulated time and returns a pointer to the included object.
///
/// If this object provides sequence points, checks for changes to the next
/// sequence point upon deletion of the pointer.
forceinline auto operator->() {
flush();
return std::unique_ptr<T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(this));
}
/// Acts exactly as per the standard ->, but preserves constness.
///
/// Despite being const, this will flush the object and, if relevant, update the next sequence point.
forceinline auto operator -> () const {
auto non_const_this = const_cast<JustInTimeActor<T, multiplier, divider, LocalTimeScale, TargetTimeScale> *>(this);
non_const_this->flush();
return std::unique_ptr<const T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(non_const_this));
}
/// @returns a pointer to the included object, without flushing time.
forceinline T *last_valid() {
return &object_;
}
/// @returns the amount of time since the object was last flushed, in the target time scale.
forceinline TargetTimeScale time_since_flush() const {
// TODO: does this handle conversions properly where TargetTimeScale != LocalTimeScale?
if constexpr (divider == 1) {
return time_since_update_;
}
return TargetTimeScale(time_since_update_.as_integral() / divider);
}
/// Flushes all accumulated time.
///
/// This does not affect this actor's record of when the next sequence point will occur.
forceinline void flush() {
if(!is_flushed_) {
did_flush_ = is_flushed_ = true;
if constexpr (divider == 1) {
const auto duration = time_since_update_.template flush<TargetTimeScale>();
object_.run_for(duration);
} else {
const auto duration = time_since_update_.template divide<TargetTimeScale>(LocalTimeScale(divider));
if(duration > TargetTimeScale(0))
object_.run_for(duration);
}
}
}
/// Indicates whether a flush has occurred since the last call to did_flush().
forceinline bool did_flush() {
const bool did_flush = did_flush_;
did_flush_ = false;
return did_flush;
}
/// @returns the number of cycles until the next sequence-point-based flush, if the embedded object
/// supports sequence points; @c LocalTimeScale() otherwise.
LocalTimeScale cycles_until_implicit_flush() const {
return time_until_event_;
}
/// Indicates whether a sequence-point-caused flush will occur if the specified period is added.
forceinline bool will_flush(LocalTimeScale rhs) const {
if constexpr (!has_sequence_points<T>::value) {
return false;
}
return rhs >= time_until_event_;
}
/// Updates this template's record of the next sequence point.
void update_sequence_point() {
if constexpr (has_sequence_points<T>::value) {
time_until_event_ = object_.get_next_sequence_point();
assert(time_until_event_ > LocalTimeScale(0));
}
}
private:
T object_;
LocalTimeScale time_since_update_, time_until_event_;
bool is_flushed_ = true;
bool did_flush_ = false;
template <typename S, typename = void> struct has_sequence_points : std::false_type {};
template <typename S> struct has_sequence_points<S, decltype(void(std::declval<S &>().get_next_sequence_point()))> : std::true_type {};
};
/*!
A RealTimeActor presents the same interface as a JustInTimeActor but doesn't defer work.
Time added will be performed immediately.
Its primary purpose is to allow consumers to remain flexible in their scheduling.
*/
template <class T, int multiplier = 1, int divider = 1, class LocalTimeScale = HalfCycles, class TargetTimeScale = LocalTimeScale> class RealTimeActor {
public:
template<typename... Args> RealTimeActor(Args&&... args) : object_(std::forward<Args>(args)...) {}
forceinline void operator += (const LocalTimeScale &rhs) {
if constexpr (multiplier == 1 && divider == 1) {
object_.run_for(TargetTimeScale(rhs));
return;
}
if constexpr (multiplier == 1) {
accumulated_time_ += rhs;
} else {
accumulated_time_ += rhs * multiplier;
}
if constexpr (divider == 1) {
const auto duration = accumulated_time_.template flush<TargetTimeScale>();
object_.run_for(duration);
} else {
const auto duration = accumulated_time_.template divide<TargetTimeScale>(LocalTimeScale(divider));
if(duration > TargetTimeScale(0))
object_.run_for(duration);
}
}
forceinline T *operator->() { return &object_; }
forceinline const T *operator->() const { return &object_; }
forceinline T *last_valid() { return &object_; }
forceinline void flush() {}
private:
T object_;
LocalTimeScale accumulated_time_;
};
/*!
A AsyncJustInTimeActor acts like a JustInTimeActor but additionally contains an AsyncTaskQueue.
Any time the amount of accumulated time crosses a threshold provided at construction time,
the object will be updated on the AsyncTaskQueue.
*/
template <class T, class LocalTimeScale = HalfCycles, class TargetTimeScale = LocalTimeScale> class AsyncJustInTimeActor {
public:
/// Constructs a new AsyncJustInTimeActor using the same construction arguments as the included object.
template<typename... Args> AsyncJustInTimeActor(TargetTimeScale threshold, Args&&... args) :
object_(std::forward<Args>(args)...),
threshold_(threshold) {}
/// Adds time to the actor.
inline void operator += (const LocalTimeScale &rhs) {
time_since_update_ += rhs;
if(time_since_update_ >= threshold_) {
time_since_update_ -= threshold_;
task_queue_.enqueue([this] () {
object_.run_for(threshold_);
});
}
is_flushed_ = false;
}
/// Flushes all accumulated time and returns a pointer to the included object.
inline T *operator->() {
flush();
return &object_;
}
/// Returns a pointer to the included object without flushing time.
inline T *last_valid() {
return &object_;
}
/// Flushes all accumulated time.
inline void flush() {
if(!is_flushed_) {
task_queue_.flush();
object_.run_for(time_since_update_.template flush<TargetTimeScale>());
is_flushed_ = true;
}
}
private:
T object_;
LocalTimeScale time_since_update_;
TargetTimeScale threshold_;
bool is_flushed_ = true;
Concurrency::AsyncTaskQueue task_queue_;
};
#endif /* JustInTime_h */