1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 18:31:53 +00:00
CLK/Machines/Atari2600/Atari2600.cpp
2016-04-26 19:57:05 -04:00

599 lines
18 KiB
C++

//
// Atari2600.cpp
// CLK
//
// Created by Thomas Harte on 14/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "Atari2600.hpp"
#include <algorithm>
#include <stdio.h>
using namespace Atari2600;
static const int horizontalTimerReload = 227;
Machine::Machine() :
_horizontalTimer(0),
_lastOutputStateDuration(0),
_lastOutputState(OutputState::Sync),
_piaTimerStatus(0xff),
_rom(nullptr),
_hMoveWillCount(false),
_piaDataValue{0xff, 0xff},
_tiaInputValue{0xff, 0xff}
{
memset(_collisions, 0xff, sizeof(_collisions));
set_reset_line(true);
}
void Machine::setup_output(float aspect_ratio)
{
_crt = new Outputs::CRT::CRT(228, 1, 263, Outputs::CRT::ColourSpace::YIQ, 228, 1, 1);
_crt->set_composite_sampling_function(
"float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)\n"
"{"
"uint c = texture(texID, coordinate).r;"
"uint y = (c >> 1) & 7u;"
"uint iPhase = (c >> 4);"
"float phaseOffset = 6.283185308 * float(iPhase + 13u) / 16.0;"
"return (float(y) / 7.0) * (1.0 - amplitude) + step(1, iPhase) * amplitude * cos(phase + phaseOffset);"
"}");
_crt->set_output_device(Outputs::CRT::Television);
}
void Machine::close_output()
{
delete _crt;
_crt = nullptr;
}
Machine::~Machine()
{
delete[] _rom;
close_output();
}
void Machine::switch_region()
{
_crt->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1);
}
void Machine::get_output_pixel(uint8_t *pixel, int offset)
{
// get the playfield pixel and hence a proposed colour
uint8_t playfieldPixel = _playfield[offset >> 2];
uint8_t playfieldColour = ((_playfieldControl&6) == 2) ? _playerColour[offset / 80] : _playfieldColour;
// get player and missile proposed pixels
uint8_t playerPixels[2] = {0, 0}, missilePixels[2] = {0, 0};
for(int c = 0; c < 2; c++)
{
const uint8_t repeatMask = _playerAndMissileSize[c]&7;
if(_playerGraphics[c]) {
// figure out player colour
int flipMask = (_playerReflection[c]&0x8) ? 0 : 7;
int relativeTimer = _objectCounter[c] - 5;
switch (repeatMask)
{
case 0: break;
default:
if(repeatMask&4 && relativeTimer >= 64) relativeTimer -= 64;
else if(repeatMask&2 && relativeTimer >= 32) relativeTimer -= 32;
else if(repeatMask&1 && relativeTimer >= 16) relativeTimer -= 16;
break;
case 5:
relativeTimer >>= 1;
break;
case 7:
relativeTimer >>= 2;
break;
}
if(relativeTimer >= 0 && relativeTimer < 8)
playerPixels[c] = (_playerGraphics[c] >> (relativeTimer ^ flipMask)) &1;
}
// figure out missile colour
if((_missileGraphicsEnable[c]&2) && !(_missileGraphicsReset[c]&2)) {
int missileIndex = _objectCounter[2+c] - 4;
switch (repeatMask)
{
case 0: break;
default:
if(repeatMask&4 && missileIndex >= 64) missileIndex -= 64;
else if(repeatMask&2 && missileIndex >= 32) missileIndex -= 32;
else if(repeatMask&1 && missileIndex >= 16) missileIndex -= 16;
break;
case 5:
missileIndex >>= 1;
break;
case 7:
missileIndex >>= 2;
break;
}
int missileSize = 1 << ((_playerAndMissileSize[c] >> 4)&3);
missilePixels[c] = (missileIndex >= 0 && missileIndex < missileSize) ? 1 : 0;
}
}
// get the ball proposed colour
uint8_t ballPixel = 0;
if(_ballGraphicsEnable&2) {
int ballIndex = _objectCounter[4] - 4;
int ballSize = 1 << ((_playfieldControl >> 4)&3);
ballPixel = (ballIndex >= 0 && ballIndex < ballSize) ? 1 : 0;
}
// accumulate collisions
if(playerPixels[0] | playerPixels[1]) {
_collisions[0] |= ((missilePixels[0] & playerPixels[1]) << 7) | ((missilePixels[0] & playerPixels[0]) << 6);
_collisions[1] |= ((missilePixels[1] & playerPixels[0]) << 7) | ((missilePixels[1] & playerPixels[1]) << 6);
_collisions[2] |= ((playfieldPixel & playerPixels[0]) << 7) | ((ballPixel & playerPixels[0]) << 6);
_collisions[3] |= ((playfieldPixel & playerPixels[1]) << 7) | ((ballPixel & playerPixels[1]) << 6);
_collisions[7] |= ((playerPixels[0] & playerPixels[1]) << 7);
}
if(playfieldPixel | ballPixel) {
_collisions[4] |= ((playfieldPixel & missilePixels[0]) << 7) | ((ballPixel & missilePixels[0]) << 6);
_collisions[5] |= ((playfieldPixel & missilePixels[1]) << 7) | ((ballPixel & missilePixels[1]) << 6);
_collisions[6] |= ((playfieldPixel & ballPixel) << 7);
}
if(missilePixels[0] & missilePixels[1])
_collisions[7] |= (1 << 6);
// apply appropriate priority to pick a colour
playfieldPixel |= ballPixel;
uint8_t outputColour = playfieldPixel ? playfieldColour : _backgroundColour;
if(!(_playfieldControl&0x04) || !playfieldPixel) {
if(playerPixels[1] || missilePixels[1]) outputColour = _playerColour[1];
if(playerPixels[0] || missilePixels[0]) outputColour = _playerColour[0];
}
// store colour
pixel[0] = outputColour;
}
// in imputing the knowledge that all we're dealing with is the rollover from 159 to 0,
// this is faster than the straightforward +1)%160 per profiling
#define increment_object_counter(c) _objectCounter[c] = (_objectCounter[c]+1)&~((158-_objectCounter[c]) >> 8)
void Machine::output_pixels(unsigned int count)
{
const int32_t start_of_sync = 214;
const int32_t end_of_sync = 198;
const int32_t end_of_colour_burst = 188;
while(count--)
{
OutputState state;
// update hmove
if(!(_horizontalTimer&3)) {
if(_hMoveFlags) {
const uint8_t counterValue = _hMoveCounter ^ 0x7;
for(int c = 0; c < 5; c++) {
if(counterValue == (_objectMotion[c] >> 4)) _hMoveFlags &= ~(1 << c);
if(_hMoveFlags&(1 << c)) increment_object_counter(c);
}
}
if(_hMoveIsCounting) {
_hMoveIsCounting = !!_hMoveCounter;
_hMoveCounter = (_hMoveCounter-1)&0xf;
}
}
// blank is decoded as 68 counts; sync and colour burst as 16 counts
// 4 blank
// 4 sync
// 9 'blank'; colour burst after 4
// 40 pixels
// it'll be about 43 cycles from start of hsync to start of visible frame, so...
// guesses, until I can find information: 26 cycles blank, 16 sync, 40 blank, 160 pixels
if(_horizontalTimer < (_vBlankExtend ? 152 : 160)) {
if(_vBlankEnabled) {
state = OutputState::Blank;
} else {
state = OutputState::Pixel;
}
}
else if(_horizontalTimer < end_of_colour_burst) state = OutputState::Blank;
else if(_horizontalTimer < end_of_sync) state = OutputState::ColourBurst;
else if(_horizontalTimer < start_of_sync) state = OutputState::Sync;
else state = OutputState::Blank;
// logic: if vsync is enabled, output the opposite of the automatic hsync output
if(_vSyncEnabled) {
state = (state = OutputState::Sync) ? OutputState::Blank : OutputState::Sync;
}
_lastOutputStateDuration++;
if(state != _lastOutputState) {
switch(_lastOutputState) {
case OutputState::Blank: _crt->output_blank(_lastOutputStateDuration); break;
case OutputState::Sync: _crt->output_sync(_lastOutputStateDuration); break;
case OutputState::ColourBurst: _crt->output_colour_burst(_lastOutputStateDuration, 96, 0); break;
case OutputState::Pixel: _crt->output_data(_lastOutputStateDuration, 1); break;
}
_lastOutputStateDuration = 0;
_lastOutputState = state;
if(state == OutputState::Pixel) {
_outputBuffer = _crt->allocate_write_area(160);
} else {
_outputBuffer = nullptr;
}
}
if(_horizontalTimer < (_vBlankExtend ? 152 : 160)) {
if(_outputBuffer)
get_output_pixel(&_outputBuffer[_lastOutputStateDuration], 159 - _horizontalTimer);
// increment all graphics counters
increment_object_counter(0);
increment_object_counter(1);
increment_object_counter(2);
increment_object_counter(3);
increment_object_counter(4);
}
// assumption here: signed shifts right; otherwise it's just
// an attempt to avoid both the % operator and a conditional
_horizontalTimer--;
const int32_t sign_extension = _horizontalTimer >> 31;
_horizontalTimer = (_horizontalTimer&~sign_extension) | (sign_extension&horizontalTimerReload);
if(!_horizontalTimer)
_vBlankExtend = false;
}
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
{
set_reset_line(false);
uint8_t returnValue = 0xff;
unsigned int cycles_run_for = 1;
const int32_t ready_line_disable_time = 227;//horizontalTimerReload;
if(operation == CPU6502::BusOperation::Ready) {
unsigned int distance_to_end_of_ready = (_horizontalTimer - ready_line_disable_time + horizontalTimerReload + 1)%(horizontalTimerReload + 1);
cycles_run_for = distance_to_end_of_ready / 3;
output_pixels(distance_to_end_of_ready);
} else {
output_pixels(3);
}
if(_hMoveWillCount) {
_hMoveCounter = 0x0f;
_hMoveFlags = 0x1f;
_hMoveIsCounting = true;
_hMoveWillCount = false;
}
if(_horizontalTimer == ready_line_disable_time)
set_ready_line(false);
if(operation != CPU6502::BusOperation::Ready) {
// check for a paging access
if(_rom_size > 4096 && ((address & 0x1f00) == 0x1f00)) {
uint8_t *base_ptr = _romPages[0];
uint8_t first_paging_register = (uint8_t)(0xf8 - (_rom_size >> 14)*2);
const uint8_t paging_register = address&0xff;
if(paging_register >= first_paging_register) {
const uint16_t selected_page = paging_register - first_paging_register;
if(selected_page * 4096 < _rom_size) {
base_ptr = &_rom[selected_page * 4096];
}
}
if(base_ptr != _romPages[0]) {
_romPages[0] = base_ptr;
_romPages[1] = base_ptr + 1024;
_romPages[2] = base_ptr + 2048;
_romPages[3] = base_ptr + 3072;
}
}
// check for a ROM read
if((address&0x1000) && isReadOperation(operation)) {
returnValue &= _romPages[(address >> 10)&3][address&1023];
}
// check for a RAM access
if((address&0x1280) == 0x80) {
if(isReadOperation(operation)) {
returnValue &= _ram[address&0x7f];
} else {
_ram[address&0x7f] = *value;
}
}
// check for a TIA access
if(!(address&0x1080)) {
if(isReadOperation(operation)) {
const uint16_t decodedAddress = address & 0xf;
switch(decodedAddress) {
case 0x00: // missile 0 / player collisions
case 0x01: // missile 1 / player collisions
case 0x02: // player 0 / playfield / ball collisions
case 0x03: // player 1 / playfield / ball collisions
case 0x04: // missile 0 / playfield / ball collisions
case 0x05: // missile 1 / playfield / ball collisions
case 0x06: // ball / playfield collisions
case 0x07: // player / player, missile / missile collisions
returnValue &= _collisions[decodedAddress];
break;
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
// TODO: pot ports
break;
case 0x0c:
case 0x0d:
returnValue &= _tiaInputValue[decodedAddress - 0x0c];
break;
}
} else {
const uint16_t decodedAddress = address & 0x3f;
switch(decodedAddress) {
case 0x00:
_vSyncEnabled = !!(*value & 0x02);
break;
case 0x01: _vBlankEnabled = !!(*value & 0x02); break;
case 0x02:
set_ready_line(true);
break;
case 0x03:
_horizontalTimer = 0;
break;
case 0x04:
case 0x05: _playerAndMissileSize[decodedAddress - 0x04] = *value; break;
case 0x06:
case 0x07: _playerColour[decodedAddress - 0x06] = *value; break;
case 0x08: _playfieldColour = *value; break;
case 0x09: _backgroundColour = *value; break;
case 0x0a: {
uint8_t old_playfield_control = _playfieldControl;
_playfieldControl = *value;
// did the mirroring bit change?
if((_playfieldControl^old_playfield_control)&1) {
if(_playfieldControl&1) {
for(int c = 0; c < 20; c++) _playfield[c+20] = _playfield[19-c];
} else {
memcpy(&_playfield[20], _playfield, 20);
}
}
} break;
case 0x0b:
case 0x0c: _playerReflection[decodedAddress - 0x0b] = *value; break;
case 0x0d:
_playfield[0] = ((*value) >> 4)&1;
_playfield[1] = ((*value) >> 5)&1;
_playfield[2] = ((*value) >> 6)&1;
_playfield[3] = (*value) >> 7;
if(_playfieldControl&1) {
for(int c = 0; c < 4; c++) _playfield[39-c] = _playfield[c];
} else {
memcpy(&_playfield[20], _playfield, 4);
}
break;
case 0x0e:
_playfield[4] = (*value) >> 7;
_playfield[5] = ((*value) >> 6)&1;
_playfield[6] = ((*value) >> 5)&1;
_playfield[7] = ((*value) >> 4)&1;
_playfield[8] = ((*value) >> 3)&1;
_playfield[9] = ((*value) >> 2)&1;
_playfield[10] = ((*value) >> 1)&1;
_playfield[11] = (*value)&1;
if(_playfieldControl&1) {
for(int c = 0; c < 8; c++) _playfield[35-c] = _playfield[c+4];
} else {
memcpy(&_playfield[24], &_playfield[4], 8);
}
break;
case 0x0f:
_playfield[19] = (*value) >> 7;
_playfield[18] = ((*value) >> 6)&1;
_playfield[17] = ((*value) >> 5)&1;
_playfield[16] = ((*value) >> 4)&1;
_playfield[15] = ((*value) >> 3)&1;
_playfield[14] = ((*value) >> 2)&1;
_playfield[13] = ((*value) >> 1)&1;
_playfield[12] = (*value)&1;
if(_playfieldControl&1) {
for(int c = 0; c < 8; c++) _playfield[27-c] = _playfield[c+12];
} else {
memcpy(&_playfield[32], &_playfield[12], 8);
}
break;
case 0x10: case 0x11: case 0x12: case 0x13:
case 0x14: _objectCounter[decodedAddress - 0x10] = 0; break;
case 0x1c:
_ballGraphicsEnable = _ballGraphicsEnableLatch;
case 0x1b: {
int index = decodedAddress - 0x1b;
_playerGraphicsLatch[index] = *value;
if(!(_playerGraphicsLatchEnable[index]&1))
_playerGraphics[index] = _playerGraphicsLatch[index];
_playerGraphics[index^1] = _playerGraphicsLatch[index^1];
} break;
case 0x1d: _missileGraphicsEnable[0] = *value; break;
case 0x1e: _missileGraphicsEnable[1] = *value; break;
case 0x1f:
_ballGraphicsEnableLatch = *value;
if(!(_ballGraphicsEnableDelay&1))
_ballGraphicsEnable = _ballGraphicsEnableLatch;
break;
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
_objectMotion[decodedAddress - 0x20] = *value;
break;
case 0x25: _playerGraphicsLatchEnable[0] = *value; break;
case 0x26: _playerGraphicsLatchEnable[1] = *value; break;
case 0x27: _ballGraphicsEnableDelay = *value; break;
case 0x28:
case 0x29:
if(!(*value&0x02) && _missileGraphicsReset[decodedAddress - 0x28]&0x02)
_objectCounter[decodedAddress - 0x26] = _objectCounter[decodedAddress - 0x28]; // TODO: +3 for normal, +6 for double, +10 for quad
_missileGraphicsReset[decodedAddress - 0x28] = *value;
break;
case 0x2a:
_vBlankExtend = true;
_hMoveWillCount = true;
break;
case 0x2b:
_objectMotion[0] =
_objectMotion[1] =
_objectMotion[2] =
_objectMotion[3] =
_objectMotion[4] = 0;
break;
case 0x2c:
_collisions[0] = _collisions[1] = _collisions[2] =
_collisions[3] = _collisions[4] = _collisions[5] = 0x3f;
_collisions[6] = 0x7f;
_collisions[7] = 0x3f;
break;
}
}
}
// check for a PIA access
if((address&0x1280) == 0x280) {
if(isReadOperation(operation)) {
const uint8_t decodedAddress = address & 0xf;
switch(address & 0xf) {
case 0x00:
case 0x02:
returnValue &= _piaDataValue[decodedAddress / 2];
break;
case 0x01:
case 0x03:
// TODO: port DDR
break;
case 0x04:
returnValue &= _piaTimerValue >> _piaTimerShift;
if(_writtenPiaTimerShift != _piaTimerShift) {
_piaTimerShift = _writtenPiaTimerShift;
_piaTimerValue <<= _writtenPiaTimerShift;
}
break;
case 0x05:
returnValue &= _piaTimerStatus;
_piaTimerStatus &= ~0x40;
break;
}
} else {
const uint8_t decodedAddress = address & 0x0f;
switch(decodedAddress) {
case 0x04:
case 0x05:
case 0x06:
case 0x07:
_writtenPiaTimerShift = _piaTimerShift = (decodedAddress - 0x04) * 3 + (decodedAddress / 0x07);
_piaTimerValue = (unsigned int)(*value << _piaTimerShift);
_piaTimerStatus &= ~0xc0;
break;
}
}
}
if(isReadOperation(operation)) {
*value = returnValue;
}
}
if(_piaTimerValue >= cycles_run_for) {
_piaTimerValue -= cycles_run_for;
} else {
_piaTimerValue += 0xff - cycles_run_for;
_piaTimerShift = 0;
_piaTimerStatus |= 0xc0;
}
return cycles_run_for;
}
void Machine::set_digital_input(Atari2600DigitalInput input, bool state)
{
switch (input) {
case Atari2600DigitalInputJoy1Up: if(state) _piaDataValue[0] &= ~0x10; else _piaDataValue[0] |= 0x10; break;
case Atari2600DigitalInputJoy1Down: if(state) _piaDataValue[0] &= ~0x20; else _piaDataValue[0] |= 0x20; break;
case Atari2600DigitalInputJoy1Left: if(state) _piaDataValue[0] &= ~0x40; else _piaDataValue[0] |= 0x40; break;
case Atari2600DigitalInputJoy1Right: if(state) _piaDataValue[0] &= ~0x80; else _piaDataValue[0] |= 0x80; break;
case Atari2600DigitalInputJoy2Up: if(state) _piaDataValue[0] &= ~0x01; else _piaDataValue[0] |= 0x01; break;
case Atari2600DigitalInputJoy2Down: if(state) _piaDataValue[0] &= ~0x02; else _piaDataValue[0] |= 0x02; break;
case Atari2600DigitalInputJoy2Left: if(state) _piaDataValue[0] &= ~0x04; else _piaDataValue[0] |= 0x04; break;
case Atari2600DigitalInputJoy2Right: if(state) _piaDataValue[0] &= ~0x08; else _piaDataValue[0] |= 0x08; break;
// TODO: latching
case Atari2600DigitalInputJoy1Fire: if(state) _tiaInputValue[0] &= ~0x80; else _tiaInputValue[0] |= 0x80; break;
case Atari2600DigitalInputJoy2Fire: if(state) _tiaInputValue[1] &= ~0x80; else _tiaInputValue[1] |= 0x80; break;
default: break;
}
}
void Machine::set_rom(size_t length, const uint8_t *data)
{
_rom_size = 1024;
while(_rom_size < length && _rom_size < 32768) _rom_size <<= 1;
delete[] _rom;
_rom = new uint8_t[_rom_size];
size_t offset = 0;
const size_t copy_step = std::min(_rom_size, length);
while(offset < _rom_size)
{
size_t copy_length = std::min(copy_step, _rom_size - offset);
memcpy(&_rom[offset], data, copy_length);
offset += copy_length;
}
size_t romMask = _rom_size - 1;
_romPages[0] = _rom;
_romPages[1] = &_rom[1024 & romMask];
_romPages[2] = &_rom[2048 & romMask];
_romPages[3] = &_rom[3072 & romMask];
}