1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-10 08:04:45 +00:00
CLK/Components/6845/CRTC6845.hpp
2018-05-13 15:34:31 -04:00

276 lines
8.0 KiB
C++

//
// CRTC6845.hpp
// Clock Signal
//
// Created by Thomas Harte on 31/07/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#ifndef CRTC6845_hpp
#define CRTC6845_hpp
#include "../../ClockReceiver/ClockReceiver.hpp"
#include <cstdint>
#include <cstdio>
namespace Motorola {
namespace CRTC {
struct BusState {
bool display_enable = false;
bool hsync = false;
bool vsync = false;
bool cursor = false;
uint16_t refresh_address = 0;
uint16_t row_address = 0;
};
class BusHandler {
public:
/*!
Performs the first phase of a 6845 bus cycle; this is the phase in which it is intended that
systems using the 6845 respect the bus state and produce pixels, sync or whatever they require.
*/
void perform_bus_cycle_phase1(const BusState &) {}
/*!
Performs the second phase of a 6845 bus cycle. Some bus state, including sync, is updated
directly after phase 1 and hence is visible to an observer during phase 2. Handlers may therefore
implement @c perform_bus_cycle_phase2 to be notified of the availability of that state without
having to wait until the next cycle has begun.
*/
void perform_bus_cycle_phase2(const BusState &) {}
};
enum Personality {
HD6845S, // Type 0 in CPC parlance. Zero-width HSYNC available, no status, programmable VSYNC length.
// Considered exactly identical to the UM6845, so this enum covers both.
UM6845R, // Type 1 in CPC parlance. Status register, fixed-length VSYNC.
MC6845, // Type 2. No status register, fixed-length VSYNC, no zero-length HSYNC.
AMS40226 // Type 3. Status is get register, fixed-length VSYNC, no zero-length HSYNC.
};
// TODO UM6845R and R12/R13; see http://www.cpcwiki.eu/index.php/CRTC#CRTC_Differences
template <class T> class CRTC6845 {
public:
CRTC6845(Personality p, T &bus_handler) noexcept :
personality_(p), bus_handler_(bus_handler), status_(0) {}
void select_register(uint8_t r) {
selected_register_ = r;
}
uint8_t get_status() {
switch(personality_) {
case UM6845R: return status_ | (bus_state_.vsync ? 0x20 : 0x00);
case AMS40226: return get_register();
default: return 0xff;
}
return 0xff;
}
uint8_t get_register() {
if(selected_register_ == 31) status_ &= ~0x80;
if(selected_register_ == 16 || selected_register_ == 17) status_ &= ~0x40;
if(personality_ == UM6845R && selected_register_ == 31) return dummy_register_;
if(selected_register_ < 12 || selected_register_ > 17) return 0xff;
return registers_[selected_register_];
}
void set_register(uint8_t value) {
static uint8_t masks[] = {
0xff, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0x7f, 0x7f,
0xff, 0x1f, 0x7f, 0x1f, 0x3f, 0xff, 0x3f, 0xff
};
// Per CPC documentation, skew doesn't work on a "type 1 or 2", i.e. an MC6845 or a UM6845R.
if(selected_register_ == 8 && personality_ != UM6845R && personality_ != MC6845) {
switch((value >> 4)&3) {
default: display_skew_mask_ = 1; break;
case 1: display_skew_mask_ = 2; break;
case 2: display_skew_mask_ = 4; break;
}
}
if(selected_register_ < 16) {
registers_[selected_register_] = value & masks[selected_register_];
}
if(selected_register_ == 31 && personality_ == UM6845R) {
dummy_register_ = value;
}
}
void trigger_light_pen() {
registers_[17] = bus_state_.refresh_address & 0xff;
registers_[16] = bus_state_.refresh_address >> 8;
status_ |= 0x40;
}
void run_for(Cycles cycles) {
int cyles_remaining = cycles.as_int();
while(cyles_remaining--) {
// check for end of visible characters
if(character_counter_ == registers_[1]) {
// TODO: consider skew in character_is_visible_. Or maybe defer until perform_bus_cycle?
character_is_visible_ = false;
end_of_line_address_ = bus_state_.refresh_address;
}
perform_bus_cycle_phase1();
bus_state_.refresh_address = (bus_state_.refresh_address + 1) & 0x3fff;
// check for end-of-line
if(character_counter_ == registers_[0]) {
character_counter_ = 0;
do_end_of_line();
character_is_visible_ = true;
} else {
// increment counter
character_counter_++;
}
// check for start of horizontal sync
if(character_counter_ == registers_[2]) {
hsync_counter_ = 0;
bus_state_.hsync = true;
}
// check for end of horizontal sync; note that a sync time of zero will result in an immediate
// cancellation of the plan to perform sync if this is an HD6845S or UM6845R; otherwise zero
// will end up counting as 16 as it won't be checked until after overflow.
if(bus_state_.hsync) {
switch(personality_) {
case HD6845S:
case UM6845R:
bus_state_.hsync = hsync_counter_ != (registers_[3] & 15);
hsync_counter_ = (hsync_counter_ + 1) & 15;
break;
default:
hsync_counter_ = (hsync_counter_ + 1) & 15;
bus_state_.hsync = hsync_counter_ != (registers_[3] & 15);
break;
}
}
perform_bus_cycle_phase2();
}
}
const BusState &get_bus_state() const {
return bus_state_;
}
private:
inline void perform_bus_cycle_phase1() {
// Skew theory of operation: keep a history of the last three states, and apply whichever is selected.
character_is_visible_shifter_ = (character_is_visible_shifter_ << 1) | static_cast<unsigned int>(character_is_visible_);
bus_state_.display_enable = (static_cast<int>(character_is_visible_shifter_) & display_skew_mask_) && line_is_visible_;
bus_handler_.perform_bus_cycle_phase1(bus_state_);
}
inline void perform_bus_cycle_phase2() {
bus_handler_.perform_bus_cycle_phase2(bus_state_);
}
inline void do_end_of_line() {
// check for end of vertical sync
if(bus_state_.vsync) {
vsync_counter_ = (vsync_counter_ + 1) & 15;
// on the UM6845R and AMS40226, honour the programmed vertical sync time; on the other CRTCs
// always use a vertical sync count of 16.
switch(personality_) {
case HD6845S:
case AMS40226:
bus_state_.vsync = vsync_counter_ != (registers_[3] >> 4);
break;
default:
bus_state_.vsync = vsync_counter_ != 0;
break;
}
}
if(is_in_adjustment_period_) {
line_counter_++;
if(line_counter_ == registers_[5]) {
is_in_adjustment_period_ = false;
do_end_of_frame();
}
} else {
// advance vertical counter
if(bus_state_.row_address == registers_[9]) {
bus_state_.row_address = 0;
line_address_ = end_of_line_address_;
// check for entry into the overflow area
if(line_counter_ == registers_[4]) {
if(registers_[5]) {
line_counter_ = 0;
is_in_adjustment_period_ = true;
} else {
do_end_of_frame();
}
} else {
line_counter_ = (line_counter_ + 1) & 0x7f;
// check for start of vertical sync
if(line_counter_ == registers_[7]) {
bus_state_.vsync = true;
vsync_counter_ = 0;
}
// check for end of visible lines
if(line_counter_ == registers_[6]) {
line_is_visible_ = false;
}
}
} else {
bus_state_.row_address = (bus_state_.row_address + 1) & 0x1f;
}
}
bus_state_.refresh_address = line_address_;
character_counter_ = 0;
character_is_visible_ = (registers_[1] != 0);
}
inline void do_end_of_frame() {
line_counter_ = 0;
line_is_visible_ = true;
line_address_ = static_cast<uint16_t>((registers_[12] << 8) | registers_[13]);
bus_state_.refresh_address = line_address_;
}
Personality personality_;
T &bus_handler_;
BusState bus_state_;
uint8_t registers_[18] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t dummy_register_ = 0;
int selected_register_ = 0;
uint8_t character_counter_ = 0;
uint8_t line_counter_ = 0;
bool character_is_visible_ = false, line_is_visible_ = false;
int hsync_counter_ = 0;
int vsync_counter_ = 0;
bool is_in_adjustment_period_ = false;
uint16_t line_address_ = 0;
uint16_t end_of_line_address_ = 0;
uint8_t status_ = 0;
int display_skew_mask_ = 1;
unsigned int character_is_visible_shifter_ = 0;
};
}
}
#endif /* CRTC6845_hpp */