1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Components/OPL2/OPL2.hpp

361 lines
12 KiB
C++

//
// OPL2.hpp
// Clock Signal
//
// Created by Thomas Harte on 02/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef OPL2_hpp
#define OPL2_hpp
#include "../../Outputs/Speaker/Implementation/SampleSource.hpp"
#include "../../Concurrency/AsyncTaskQueue.hpp"
#include "../../Numeric/LFSR.hpp"
#include <atomic>
#include <cmath>
namespace Yamaha {
namespace OPL {
/*!
Describes the ephemeral state of an operator.
*/
struct OperatorState {
public:
int phase = 0; // Will be in the range [0, 1023], mapping into a 1024-unit sine curve.
int attenuation = 1023; // Will be in the range [0, 1023].
private:
int divider_ = 0;
int raw_phase_ = 0;
enum class ADSRPhase {
Attack, Decay, Sustain, Release
} adsr_phase_ = ADSRPhase::Attack;
int time_in_phase_ = 0;
int adsr_attenuation_ = 511;
bool last_key_on_ = false;
friend class Operator;
};
/*!
Describes parts of an operator that are genuinely stored per-operator on the OPLL;
these can be provided to the Operator in order to have it ignore its local values
if the host is an OPLL or VRC7.
*/
struct OperatorOverrides {
int attenuation = 0;
bool hold_sustain_level = false;
};
/*!
Models an operator.
In Yamaha FM terms, an operator is a combination of a few things:
* an oscillator, producing one of a handful of sine-derived waveforms;
* an ADSR output level envelope; and
* a bunch of potential adjustments to those two things:
* optional tremolo and/or vibrato (the rates of which are global);
* the option to skip 'sustain' in ADSR and go straight to release (since no sustain period is supplied,
it otherwise runs for as long as the programmer leaves a channel enabled);
* an attenuation for the output level; and
* a factor by which to speed up the ADSR envelope as a function of frequency.
Oscillator period isn't set directly, it's a multiple of the owning channel, in which
period is set as a combination of f-num and octave.
*/
class Operator {
public:
/// Sets this operator's attack rate as the top nibble of @c value, its decay rate as the bottom nibble.
void set_attack_decay(uint8_t value) {
attack_rate_ = (value & 0xf0) >> 2;
decay_rate_ = (value & 0x0f) << 2;
}
/// Sets this operator's sustain level as the top nibble of @c value, its release rate as the bottom nibble.
void set_sustain_release(uint8_t value) {
sustain_level_ = (value & 0xf0) >> 4;
release_rate_ = (value & 0x0f) << 2;
}
/// Sets this operator's key scale level as the top two bits of @c value, its total output level as the low six bits.
void set_scaling_output(uint8_t value) {
scaling_level = value >> 6;
attenuation_ = value & 0x3f;
}
/// Sets this operator's waveform using the low two bits of @c value.
void set_waveform(uint8_t value) {
waveform = Operator::Waveform(value & 3);
}
/// From the top nibble of @c value sets the AM, vibrato, hold/sustain level and keyboard sampling rate flags;
/// uses the bottom nibble to set the period multiplier.
void set_am_vibrato_hold_sustain_ksr_multiple(uint8_t value) {
apply_amplitude_modulation = value & 0x80;
apply_vibrato = value & 0x40;
hold_sustain_level = value & 0x20;
keyboard_scaling_rate = value & 0x10;
frequency_multiple = value & 0xf;
}
void update(OperatorState &state, bool key_on, int channel_period, int channel_octave, OperatorOverrides *overrides = nullptr);
bool is_audible(OperatorState &state, OperatorOverrides *overrides = nullptr) {
if(state.adsr_phase_ == OperatorState::ADSRPhase::Release) {
if(overrides) {
if(overrides->attenuation == 0xf) return false;
} else {
if(attenuation_ == 0x3f) return false;
}
}
return state.adsr_attenuation_ != 511;
}
private:
/// If true then an amplitude modulation of "3.7Hz" is applied,
/// with a depth "determined by the AM-DEPTH of the BD register"?
bool apply_amplitude_modulation = false;
/// If true then a vibrato of '6.4 Hz' is applied, with a depth
/// "determined by VOB_DEPTH of the BD register"?
bool apply_vibrato = false;
/// Selects between an ADSR envelope that holds at the sustain level
/// for as long as this key is on, releasing afterwards, and one that
/// simply switches straight to the release rate once the sustain
/// level is hit, getting back to 0 regardless of an ongoing key-on.
bool hold_sustain_level = false;
/// Provides a potential faster step through the ADSR envelope. Cf. p12.
bool keyboard_scaling_rate = false;
/// Indexes a lookup table to determine what multiple of the channel's frequency
/// this operator is advancing at.
int frequency_multiple = 0;
/// Sets the current output level of this modulator, as an attenuation.
int attenuation_ = 0;
/// Selects attenuation that is applied as a function of interval. Cf. p14.
int scaling_level = 0;
/// Sets the ADSR rates. These all provide the top four bits of a six-bit number;
/// the bottom two bits... are 'RL'?
int attack_rate_ = 0;
int decay_rate_ = 0;
int sustain_level_ = 0;
int release_rate_ = 0;
/// Selects the generated waveform.
enum class Waveform {
Sine, HalfSine, AbsSine, PulseSine
} waveform = Waveform::Sine;
};
/*!
Models an L-type two-operator channel.
Assuming FM synthesis is enabled, the channel modulates the output of the carrier with that of the modulator.
*/
class Channel {
public:
/// Sets the low 8 bits of frequency control.
void set_frequency_low(uint8_t value) {
period_ = (period_ &~0xff) | value;
}
/// Sets the high two bits of a 10-bit frequency control, along with this channel's
/// block/octave, and key on or off.
void set_10bit_frequency_octave_key_on(uint8_t value) {
period_ = (period_ & 0xff) | ((value & 3) << 8);
octave = (value >> 2) & 0x7;
key_on = value & 0x20;
frequency_shift = 0;
}
/// Sets the high two bits of a 9-bit frequency control, along with this channel's
/// block/octave, and key on or off.
void set_9bit_frequency_octave_key_on(uint8_t value) {
period_ = (period_ & 0xff) | ((value & 1) << 8);
octave = (value >> 1) & 0x7;
key_on = value & 0x10;;
frequency_shift = 1;
}
/// Sets the amount of feedback provided to the first operator (i.e. the modulator)
/// associated with this channel, and whether FM synthesis is in use.
void set_feedback_mode(uint8_t value) {
feedback_strength = (value >> 1) & 0x7;
use_fm_synthesis = value & 1;
}
/// This should be called at a rate of around 49,716 Hz; it returns the current output level
/// level for this channel.
int update(Operator *modulator, Operator *carrier, OperatorOverrides *modulator_overrides = nullptr, OperatorOverrides *carrier_overrides = nullptr) {
modulator->update(modulator_state_, key_on, period_ << frequency_shift, octave, modulator_overrides);
carrier->update(carrier_state_, key_on, period_ << frequency_shift, octave, carrier_overrides);
// TODO: almost everything. This is a quick test.
// Specifically: use lookup tables.
const auto modulator_level = level(modulator_state_, 0.0f); // TODO: what's the proper scaling on this?
return int(level(carrier_state_, modulator_level) * 20'000.0f);
}
/// @returns @c true if this channel is currently producing any audio; @c false otherwise;
bool is_audible(Operator *carrier, OperatorOverrides *carrier_overrides = nullptr) {
return carrier->is_audible(carrier_state_, carrier_overrides);
}
private:
float level(OperatorState &state, float modulator_level) {
const float phase = modulator_level + float(state.phase) / 1024.0f;
const float phase_attenuation = logf(1.0f + sinf(float(M_PI) * 2.0f * phase));
const float total_attenuation = phase_attenuation + float(state.attenuation) / 1023.0f;
const float result = expf(total_attenuation / 2.0f);
return result;
}
/// 'F-Num' in the spec; this plus the current octave determines channel frequency.
int period_ = 0;
/// Linked with the frequency, determines the channel frequency.
int octave = 0;
/// Sets sets this channel on or off, as an input to the ADSR envelope,
bool key_on = false;
/// Sets the degree of feedback applied to the modulator.
int feedback_strength = 0;
/// Selects between FM synthesis, using the modulator to modulate the carrier, or simple mixing of the two
/// underlying operators as completely disjoint entities.
bool use_fm_synthesis = true;
/// Used internally to make both the 10-bit OPL2 frequency selection and 9-bit OPLL/VRC7 frequency
/// selections look the same when passed to the operators.
int frequency_shift = 0;
// Stored separately because carrier/modulator may not be unique per channel —
// on the OPLL there's an extra level of indirection.
OperatorState carrier_state_, modulator_state_;
};
template <typename Child> class OPLBase: public ::Outputs::Speaker::SampleSource {
public:
void write(uint16_t address, uint8_t value);
protected:
OPLBase(Concurrency::DeferringAsyncTaskQueue &task_queue);
Concurrency::DeferringAsyncTaskQueue &task_queue_;
int exponential_[256];
int log_sin_[256];
uint8_t depth_rhythm_control_;
uint8_t csm_keyboard_split_;
bool waveform_enable_;
private:
uint8_t selected_register_ = 0;
};
struct OPL2: public OPLBase<OPL2> {
public:
// Creates a new OPL2.
OPL2(Concurrency::DeferringAsyncTaskQueue &task_queue);
/// As per ::SampleSource; provides a broadphase test for silence.
bool is_zero_level();
/// As per ::SampleSource; provides audio output.
void get_samples(std::size_t number_of_samples, std::int16_t *target);
void set_sample_volume_range(std::int16_t range);
/// Reads from the OPL.
uint8_t read(uint16_t address);
private:
friend OPLBase<OPL2>;
Operator operators_[18];
Channel channels_[9];
// This is the correct LSFR per forums.submarine.org.uk.
Numeric::LFSR<uint32_t, 0x800302> noise_source_;
// Synchronous properties, valid only on the emulation thread.
uint8_t timers_[2] = {0, 0};
uint8_t timer_control_ = 0;
void write_register(uint8_t address, uint8_t value);
};
struct OPLL: public OPLBase<OPLL> {
public:
// Creates a new OPLL or VRC7.
OPLL(Concurrency::DeferringAsyncTaskQueue &task_queue, int audio_divider = 1, bool is_vrc7 = false);
/// As per ::SampleSource; provides a broadphase test for silence.
bool is_zero_level();
/// As per ::SampleSource; provides audio output.
void get_samples(std::size_t number_of_samples, std::int16_t *target);
void set_sample_volume_range(std::int16_t range);
/// Reads from the OPL.
uint8_t read(uint16_t address);
private:
friend OPLBase<OPLL>;
Operator operators_[38]; // There's an extra level of indirection with the OPLL; these 38
// operators are to describe 19 hypothetical channels, being
// one user-configurable channel, 15 hard-coded channels, and
// three channels configured for rhythm generation.
struct Channel: public ::Yamaha::OPL::Channel {
int update() {
return Yamaha::OPL::Channel::update(modulator, modulator + 1, nullptr, &overrides);
}
bool is_audible() {
return Yamaha::OPL::Channel::is_audible(modulator + 1, &overrides);
}
Operator *modulator; // Implicitly, the carrier is modulator+1.
OperatorOverrides overrides;
int level = 0;
};
void update_all_chanels() {
for(int c = 0; c < 6; ++ c) { // Don't do anything with channels that might be percussion for now.
channels_[c].level = (channels_[c].update() * total_volume_) >> 14;
}
channels_[2].level = (channels_[2].update() * total_volume_) >> 14;
}
Channel channels_[9];
void setup_fixed_instrument(int number, const uint8_t *data);
uint8_t custom_instrument_[8];
void write_register(uint8_t address, uint8_t value);
const int audio_divider_ = 1;
int audio_offset_ = 0;
std::atomic<int> total_volume_;
};
}
}
#endif /* OPL2_hpp */