1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-05 13:30:07 +00:00
CLK/Storage/Disk/DiskImage/Formats/AmigaADF.cpp
Thomas Harte 955cb6411c Factor out bit spreading.
(And do a better job of it)
2021-10-12 14:49:01 -07:00

188 lines
5.8 KiB
C++

//
// AmigaADF.cpp
// Clock Signal
//
// Created by Thomas Harte on 16/07/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "AmigaADF.hpp"
#include "../../Encodings/MFM/Constants.hpp"
#include "../../Encodings/MFM/Encoder.hpp"
#include "../../../../Numeric/BitSpread.hpp"
#include "../../Track/PCMTrack.hpp"
#include <type_traits>
using namespace Storage::Disk;
namespace {
/// Builds a buffer containing the bytes between @c begin and @c end split up so that the nibbles in the first half of the buffer
/// consist of the odd bits of the source bytes — b1, b3, b5 and b7 — ordered so that most-significant nibbles come before
/// least-significant ones, and the second half of the buffer contains the even bits.
///
/// Nibbles are written to @c first; it is assumed that an even number of source bytes have been supplied.
template <typename IteratorT, class OutputIt> void encode_block(IteratorT begin, IteratorT end, OutputIt first) {
// Parse 1: combine odd bits.
auto cursor = begin;
while(cursor != end) {
auto source = uint8_t(
((*cursor & 0x02) << 3) |
((*cursor & 0x08) << 2) |
((*cursor & 0x20) << 1) |
((*cursor & 0x80) << 0)
);
++cursor;
source |=
((*cursor & 0x02) >> 1) |
((*cursor & 0x08) >> 2) |
((*cursor & 0x20) >> 3) |
((*cursor & 0x80) >> 4);
++cursor;
*first = source;
++first;
}
// Parse 2: combine even bits.
cursor = begin;
while(cursor != end) {
auto source = uint8_t(
((*cursor & 0x01) << 4) |
((*cursor & 0x04) << 3) |
((*cursor & 0x10) << 2) |
((*cursor & 0x40) << 1)
);
++cursor;
source |=
((*cursor & 0x01) >> 0) |
((*cursor & 0x04) >> 1) |
((*cursor & 0x10) >> 2) |
((*cursor & 0x40) >> 3);
++cursor;
*first = source;
++first;
}
}
/// Construsts the Amiga-style checksum of the bytes between @c begin and @c end, which is a 32-bit exclusive OR of the source data
/// with each byte converted into a 16-bit word by inserting a 0 bit between every data bit, and then combined into 32-bit words in
/// big endian order.
template <typename IteratorT> auto checksum(IteratorT begin, IteratorT end) {
uint16_t checksum[2]{};
int offset = 0;
while(begin != end) {
const uint8_t value = *begin;
++begin;
// Do a clockless MFM encode.
const auto spread = Numeric::spread_bits(value);
checksum[offset] ^= spread;
offset ^= 1;
}
return std::array<uint8_t, 4>{
uint8_t(checksum[0] >> 8),
uint8_t(checksum[0]),
uint8_t(checksum[1] >> 8),
uint8_t(checksum[1]),
};
}
/// Obtains the Amiga-style checksum of the data between @c begin and @c end, then odd-even encodes it and writes
/// it out to @c encoder.
template <typename IteratorT> void write_checksum(IteratorT begin, IteratorT end, std::unique_ptr<Storage::Encodings::MFM::Encoder> &encoder) {
// Believe it or not, this appears to be the actual checksum algorithm on the Amiga:
//
// (1) calculate the XOR checksum of the MFM-encoded data, read as 32-bit words;
// (2) throw away the clock bits;
// (3) Take the resulting 32-bit value and perform an odd-even MFM encoding on those.
const auto raw_checksum = checksum(begin, end);
std::decay_t<decltype(raw_checksum)> encoded_checksum{};
encode_block(raw_checksum.begin(), raw_checksum.end(), encoded_checksum.begin());
encoder->add_bytes(encoded_checksum.begin(), encoded_checksum.end());
}
}
AmigaADF::AmigaADF(const std::string &file_name) :
file_(file_name) {
// Dumb validation only for now: a size check.
if(file_.stats().st_size != 901120) throw Error::InvalidFormat;
}
HeadPosition AmigaADF::get_maximum_head_position() {
return HeadPosition(80);
}
int AmigaADF::get_head_count() {
return 2;
}
std::shared_ptr<Track> AmigaADF::get_track_at_position(Track::Address address) {
using namespace Storage::Encodings;
// Create an MFM encoder.
Storage::Disk::PCMSegment encoded_segment;
encoded_segment.data.reserve(102'400); // i.e. 0x1900 bytes.
auto encoder = MFM::GetMFMEncoder(encoded_segment.data);
// Grab the unencoded track.
file_.seek(get_file_offset_for_position(address), SEEK_SET);
const std::vector<uint8_t> track_data = file_.read(512 * 11);
// Eleven sectors are then encoded.
for(size_t s = 0; s < 11; s++) {
// Two bytes of 0x00 act as an inter-sector gap.
encoder->add_byte(0);
encoder->add_byte(0);
// Add additional sync.
encoder->output_short(MFM::MFMSync);
encoder->output_short(MFM::MFMSync);
// Encode and write the header.
const uint8_t header[4] = {
0xff, // Amiga v1.0 format.
uint8_t(address.position.as_int() * 2 + address.head), // Track.
uint8_t(s), // Sector.
uint8_t(11 - s), // Sectors remaining.
};
std::array<uint8_t, 4> encoded_header;
encode_block(std::begin(header), std::end(header), std::begin(encoded_header));
encoder->add_bytes(std::begin(encoded_header), std::end(encoded_header));
// Write the sector label.
const std::array<uint8_t, 16> os_recovery{};
encoder->add_bytes(os_recovery.begin(), os_recovery.end());
// Encode the data.
std::array<uint8_t, 512> encoded_data;
encode_block(&track_data[s * 512], &track_data[(s + 1) * 512], std::begin(encoded_data));
// Write checksums.
write_checksum(std::begin(encoded_header), std::end(encoded_header), encoder);
write_checksum(std::begin(encoded_data), std::end(encoded_data), encoder);
// Write data.
encoder->add_bytes(std::begin(encoded_data), std::end(encoded_data));
}
// Throw in an '830-byte' gap (that's in MFM, I think — 830 bytes prior to decoding).
// Cf. https://www.techtravels.org/2007/01/syncing-to-the-0x4489-0x4489/#comment-295
for(int c = 0; c < 415; c++) {
encoder->add_byte(0xff);
}
return std::make_shared<Storage::Disk::PCMTrack>(std::move(encoded_segment));
}
long AmigaADF::get_file_offset_for_position(Track::Address address) {
return (address.position.as_int() * 2 + address.head) * 512 * 11;
}