1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Storage/Disk/Encodings/MFM/Parser.cpp

315 lines
8.9 KiB
C++

//
// Parser.cpp
// Clock Signal
//
// Created by Thomas Harte on 24/09/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "Parser.hpp"
#include "Constants.hpp"
#include "../../DiskImage/DiskImage.hpp"
#include "../../SingleTrackDisk/SingleTrackDisk.hpp"
using namespace Storage::Encodings::MFM;
Parser::Parser(bool is_mfm) :
Storage::Disk::Controller(4000000),
crc_generator_(0x1021, 0xffff),
shift_register_(0), is_mfm_(is_mfm),
track_(0), head_(0) {
Storage::Time bit_length;
bit_length.length = 1;
bit_length.clock_rate = is_mfm ? 500000 : 250000; // i.e. 250 kbps (including clocks)
set_expected_bit_length(bit_length);
drive_.reset(new Storage::Disk::Drive(4000000, 300, 2));
set_drive(drive_);
drive_->set_motor_on(true);
}
Parser::Parser(bool is_mfm, const std::shared_ptr<Storage::Disk::Disk> &disk) :
Parser(is_mfm) {
drive_->set_disk(disk);
}
Parser::Parser(bool is_mfm, const std::shared_ptr<Storage::Disk::Track> &track) :
Parser(is_mfm) {
drive_->set_disk(std::make_shared<Disk::DiskImageHolder<Disk::SingleTrackDiskImage>>(track));
}
void Parser::seek_to_track(uint8_t track) {
int difference = (int)track - (int)track_;
track_ = track;
if(difference) {
int direction = difference < 0 ? -1 : 1;
difference *= direction;
for(int c = 0; c < difference; c++) drive_->step(direction);
}
}
std::shared_ptr<Sector> Parser::get_sector(uint8_t head, uint8_t track, uint8_t sector) {
// Switch head and track if necessary.
if(head_ != head) {
drive_->set_head(head);
}
seek_to_track(track);
int track_index = get_index(head, track, 0);
// Populate the sector cache if it's not already populated by asking for sectors unless and until
// one is returned that has already been seen.
if(decoded_tracks_.find(track_index) == decoded_tracks_.end()) {
std::shared_ptr<Sector> first_sector = get_next_sector();
std::set<uint8_t> visited_sectors;
if(first_sector) {
while(1) {
std::shared_ptr<Sector> next_sector = get_next_sector();
if(next_sector) {
if(visited_sectors.find(next_sector->address.sector) != visited_sectors.end()) {
break;
}
visited_sectors.insert(next_sector->address.sector);
}
}
}
decoded_tracks_.insert(track_index);
}
// Check cache for sector.
int index = get_index(head, track, sector);
auto cached_sector = sectors_by_index_.find(index);
if(cached_sector != sectors_by_index_.end()) {
return cached_sector->second;
}
// If it wasn't found, it doesn't exist.
return nullptr;
}
std::vector<uint8_t> Parser::get_track(uint8_t track) {
seek_to_track(track);
return get_track();
}
void Parser::process_input_bit(int value) {
shift_register_ = ((shift_register_ << 1) | (unsigned int)value) & 0xffff;
bit_count_++;
}
void Parser::process_index_hole() {
index_count_++;
}
uint8_t Parser::get_byte_for_shift_value(uint16_t value) {
return (uint8_t)(
((value&0x0001) >> 0) |
((value&0x0004) >> 1) |
((value&0x0010) >> 2) |
((value&0x0040) >> 3) |
((value&0x0100) >> 4) |
((value&0x0400) >> 5) |
((value&0x1000) >> 6) |
((value&0x4000) >> 7));
}
uint8_t Parser::get_next_byte() {
bit_count_ = 0;
// Archetypal MFM is 500,000 bps given that the drive has an RPM of 300. Clock rate was
// specified at 4,000,000. So that's an idealised 8 cycles per bit, Jump ahead 14
// times that...
run_for(Cycles(14 * 8));
// ... and proceed at half-idealised-bit intervals to get the next bit. Then proceed very gingerly indeed.
while(bit_count_ < 15) run_for(Cycles(4));
while(bit_count_ < 16) run_for(Cycles(2));
uint8_t byte = get_byte_for_shift_value((uint16_t)shift_register_);
crc_generator_.add(byte);
return byte;
}
std::vector<uint8_t> Parser::get_track() {
std::vector<uint8_t> result;
int distance_until_permissible_sync = 0;
uint8_t last_id[6] = {0, 0, 0, 0, 0, 0};
int last_id_pointer = 0;
bool next_is_type = false;
// align to the next index hole
index_count_ = 0;
while(!index_count_) run_for(Cycles(1));
// capture every other bit until the next index hole
index_count_ = 0;
while(1) {
// wait until either another bit or the index hole arrives
bit_count_ = 0;
bool found_sync = false;
while(!index_count_ && !found_sync && bit_count_ < 16) {
int previous_bit_count = bit_count_;
run_for(Cycles(1));
if(!distance_until_permissible_sync && bit_count_ != previous_bit_count) {
uint16_t low_shift_register = (shift_register_&0xffff);
if(is_mfm_) {
found_sync = (low_shift_register == MFMIndexSync) || (low_shift_register == MFMSync);
} else {
found_sync =
(low_shift_register == FMIndexAddressMark) ||
(low_shift_register == FMIDAddressMark) ||
(low_shift_register == FMDataAddressMark) ||
(low_shift_register == FMDeletedDataAddressMark);
}
}
}
// if that was the index hole then finish
if(index_count_) {
if(bit_count_) result.push_back(get_byte_for_shift_value((uint16_t)(shift_register_ << (16 - bit_count_))));
break;
}
// store whatever the current byte is
uint8_t byte_value = get_byte_for_shift_value((uint16_t)shift_register_);
result.push_back(byte_value);
if(last_id_pointer < 6) last_id[last_id_pointer++] = byte_value;
// if no syncs are permissible here, decrement the waiting period and perform no further contemplation
bool found_id = false, found_data = false;
if(distance_until_permissible_sync) {
distance_until_permissible_sync--;
} else {
if(found_sync) {
if(is_mfm_) {
next_is_type = true;
} else {
switch(shift_register_&0xffff) {
case FMIDAddressMark: found_id = true; break;
case FMDataAddressMark:
case FMDeletedDataAddressMark: found_data = true; break;
}
}
} else if(next_is_type) {
switch(byte_value) {
case IDAddressByte: found_id = true; break;
case DataAddressByte:
case DeletedDataAddressByte: found_data = true; break;
}
}
}
if(found_id) {
distance_until_permissible_sync = 6;
last_id_pointer = 0;
}
if(found_data) {
distance_until_permissible_sync = 128 << last_id[3];
}
}
return result;
}
std::shared_ptr<Sector> Parser::get_next_sector() {
std::shared_ptr<Sector> sector(new Sector);
index_count_ = 0;
while(index_count_ < 2) {
// look for an ID address mark
bool id_found = false;
while(!id_found) {
run_for(Cycles(1));
if(is_mfm_) {
while(shift_register_ == MFMSync) {
uint8_t mark = get_next_byte();
if(mark == IDAddressByte) {
crc_generator_.set_value(MFMPostSyncCRCValue);
id_found = true;
break;
}
}
} else {
if(shift_register_ == FMIDAddressMark) {
crc_generator_.reset();
id_found = true;
}
}
if(index_count_ >= 2) return nullptr;
}
crc_generator_.add(IDAddressByte);
sector->address.track = get_next_byte();
sector->address.side = get_next_byte();
sector->address.sector = get_next_byte();
sector->size = get_next_byte();
uint16_t header_crc = crc_generator_.get_value();
if((header_crc >> 8) != get_next_byte()) sector->has_header_crc_error = true;
if((header_crc & 0xff) != get_next_byte()) sector->has_header_crc_error = true;
// look for data mark
bool data_found = false;
while(!data_found) {
run_for(Cycles(1));
if(is_mfm_) {
while(shift_register_ == MFMSync) {
uint8_t mark = get_next_byte();
if(mark == DataAddressByte) {
crc_generator_.set_value(MFMPostSyncCRCValue);
data_found = true;
break;
}
if(mark == IDAddressByte) return nullptr;
}
} else {
if(shift_register_ == FMDataAddressMark) {
crc_generator_.reset();
data_found = true;
}
if(shift_register_ == FMIDAddressMark) return nullptr;
}
if(index_count_ >= 2) return nullptr;
}
crc_generator_.add(DataAddressByte);
size_t data_size = (size_t)(128 << sector->size);
sector->data.reserve(data_size);
for(size_t c = 0; c < data_size; c++) {
sector->data.push_back(get_next_byte());
}
uint16_t data_crc = crc_generator_.get_value();
if((data_crc >> 8) != get_next_byte()) sector->has_data_crc_error = true;
if((data_crc & 0xff) != get_next_byte()) sector->has_data_crc_error = true;
// Put this sector into the cache.
int index = get_index(head_, track_, sector->address.sector);
sectors_by_index_[index] = sector;
return sector;
}
return nullptr;
}
std::shared_ptr<Sector> Parser::get_sector(uint8_t sector) {
std::shared_ptr<Sector> first_sector;
index_count_ = 0;
while(!first_sector && index_count_ < 2) first_sector = get_next_sector();
if(!first_sector) return nullptr;
if(first_sector->address.sector == sector) return first_sector;
while(1) {
std::shared_ptr<Sector> next_sector = get_next_sector();
if(!next_sector) continue;
if(next_sector->address.sector == first_sector->address.sector) return nullptr;
if(next_sector->address.sector == sector) return next_sector;
}
}
int Parser::get_index(uint8_t head, uint8_t track, uint8_t sector) {
return head | (track << 8) | (sector << 16);
}