1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-09 01:29:44 +00:00
CLK/Machines/Acorn/Archimedes/Archimedes.cpp
2024-03-30 21:49:21 -04:00

489 lines
14 KiB
C++

//
// Archimedes.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#include "Archimedes.hpp"
#include "HalfDuplexSerial.hpp"
#include "InputOutputController.hpp"
#include "Keyboard.hpp"
#include "KeyboardMapper.hpp"
#include "MemoryController.hpp"
#include "Sound.hpp"
#include "../../AudioProducer.hpp"
#include "../../KeyboardMachine.hpp"
#include "../../MediaTarget.hpp"
#include "../../ScanProducer.hpp"
#include "../../TimedMachine.hpp"
#include "../../../Activity/Source.hpp"
#include "../../../InstructionSets/ARM/Disassembler.hpp"
#include "../../../InstructionSets/ARM/Executor.hpp"
#include "../../../Outputs/Log.hpp"
#include "../../../Components/I2C/I2C.hpp"
#include <algorithm>
#include <array>
#include <set>
#include <vector>
namespace {
Log::Logger<Log::Source::Archimedes> logger;
}
namespace Archimedes {
class ConcreteMachine:
public Machine,
public MachineTypes::MappedKeyboardMachine,
public MachineTypes::MediaTarget,
public MachineTypes::TimedMachine,
public MachineTypes::ScanProducer,
public Activity::Source
{
private:
// TODO: pick a sensible clock rate; this is just code for '24 MIPS, please'.
static constexpr int ClockRate = 24'000'000;
// Runs for 24 cycles, distributing calls to the various ticking subsystems
// 'correctly' (i.e. correctly for the approximation in use).
//
// The implementation of this is coupled to the ClockRate above, hence its
// appearance here.
template <int video_divider>
void macro_tick() {
macro_counter_ -= 24;
// This is a 24-cycle window, so at 24Mhz macro_tick() is called at 1Mhz.
// Hence, required ticks are:
//
// * CPU: 24;
// * video: 24 / video_divider;
// * timers: 2;
// * sound: 1.
tick_cpu_video<0, video_divider>(); tick_cpu_video<1, video_divider>();
tick_cpu_video<2, video_divider>(); tick_cpu_video<3, video_divider>();
tick_cpu_video<4, video_divider>(); tick_cpu_video<5, video_divider>();
tick_cpu_video<6, video_divider>(); tick_cpu_video<7, video_divider>();
tick_cpu_video<8, video_divider>(); tick_cpu_video<9, video_divider>();
tick_cpu_video<10, video_divider>(); tick_cpu_video<11, video_divider>();
tick_timers();
tick_cpu_video<12, video_divider>(); tick_cpu_video<13, video_divider>();
tick_cpu_video<14, video_divider>(); tick_cpu_video<15, video_divider>();
tick_cpu_video<16, video_divider>(); tick_cpu_video<17, video_divider>();
tick_cpu_video<18, video_divider>(); tick_cpu_video<19, video_divider>();
tick_cpu_video<20, video_divider>(); tick_cpu_video<21, video_divider>();
tick_timers();
tick_sound();
}
int macro_counter_ = 0;
template <int offset, int video_divider>
void tick_cpu_video() {
if constexpr (!(offset % video_divider)) {
tick_video();
}
#ifndef NDEBUG
// Debug mode: run CPU a lot slower. Actually at close to original advertised MIPS speed.
if constexpr (offset & 7) return;
#endif
tick_cpu();
}
public:
ConcreteMachine(
const Analyser::Static::Target &target,
const ROMMachine::ROMFetcher &rom_fetcher
) : executor_(*this, *this) {
set_clock_rate(ClockRate);
constexpr ROM::Name risc_os = ROM::Name::AcornRISCOS319;
ROM::Request request(risc_os);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
executor_.bus.set_rom(roms.find(risc_os)->second);
insert_media(target.media);
}
void update_interrupts() {
using Exception = InstructionSet::ARM::Registers::Exception;
const int requests = executor_.bus.interrupt_mask();
if((requests & InterruptRequests::FIQ) && executor_.registers().interrupt<Exception::FIQ>()) {
return;
}
if(requests & InterruptRequests::IRQ) {
// logger.info().append("[%d] IRQ at %08x prior:[r13:%08x r14:%08x]",
// instr_count,
// executor_.pc(),
// executor_.registers()[13],
// executor_.registers()[14]);
executor_.registers().interrupt<Exception::IRQ>();
}
}
void update_clock_rates() {
video_divider_ = executor_.bus.video().clock_divider();
}
private:
// MARK: - ScanProducer.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
executor_.bus.video().crt().set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return executor_.bus.video().crt().get_scaled_scan_status();
}
std::array<uint32_t, 75> pc_history;
std::size_t pc_history_ptr = 0;
uint32_t instr_count = 0;
// MARK: - TimedMachine.
void run_for(Cycles cycles) override {
macro_counter_ += cycles.as<int>();
while(macro_counter_ > 0) {
switch(video_divider_) {
default: macro_tick<2>(); break;
case 3: macro_tick<3>(); break;
case 4: macro_tick<4>(); break;
case 6: macro_tick<6>(); break;
}
}
}
int video_divider_ = 1;
std::set<uint32_t> opcodes;
void tick_cpu() {
struct SWICall {
uint32_t opcode;
uint32_t address;
uint32_t regs[10];
uint32_t return_address;
std::string value_name;
std::string swi_name;
};
static std::vector<SWICall> swis;
static uint32_t last_pc = 0;
// static uint32_t last_r9 = 0;
static bool log = false;
static bool accumulate = true;
// if(executor_.pc() == 0x03801ed8 || (executor_.registers()[9] == 0x00ff'0000 && executor_.registers()[9] != last_r9)) {
// printf("At %08x; after last PC %08x and %zu ago was %08x; r9 is %08x [%d]\n",
// executor_.pc(),
// pc_history[(pc_history_ptr - 2 + pc_history.size()) % pc_history.size()],
// pc_history.size(),
// pc_history[pc_history_ptr],
// executor_.registers()[9],
// executor_.registers()[9] != last_r9);
// }
// last_r9 = executor_.registers()[9];
uint32_t instruction;
pc_history[pc_history_ptr] = executor_.pc();
pc_history_ptr = (pc_history_ptr + 1) % pc_history.size();
if(!executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false)) {
logger.info().append("Prefetch abort at %08x; last good was at %08x", executor_.pc(), last_pc);
executor_.prefetch_abort();
// TODO: does a double abort cause a reset?
executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false);
} else {
last_pc = executor_.pc();
}
// TODO: pipeline prefetch?
// log |= executor_.pc() == 0x03801ebc;
// log |= instr_count == 72766815;
// log &= executor_.pc() != 0x000000a0;
// log = (executor_.pc() == 0x038162afc) || (executor_.pc() == 0x03824b00);
// log |= instruction & ;
// The following has the effect of logging all taken SWIs and their return codes.
if(
(instruction & 0x0f00'0000) == 0x0f00'0000 &&
executor_.registers().test(InstructionSet::ARM::Condition(instruction >> 28))
) {
if(instruction & 0x2'0000) {
swis.emplace_back();
swis.back().opcode = instruction;
swis.back().address = executor_.pc();
swis.back().return_address = executor_.registers().pc(4);
for(int c = 0; c < 10; c++) swis.back().regs[c] = executor_.registers()[uint32_t(c)];
// Possibly capture more detail.
//
// Cf. http://productsdb.riscos.com/support/developers/prm_index/numswilist.html
uint32_t pointer = 0;
switch(instruction & 0xfd'ffff) {
case 0x41501:
swis.back().swi_name = "MessageTrans_OpenFile";
// R0: pointer to file descriptor; R1: pointer to filename; R2: pointer to hold file data.
// (R0 and R1 are in the RMA if R2 = 0)
pointer = executor_.registers()[1];
break;
case 0x41502:
swis.back().swi_name = "MessageTrans_Lookup";
break;
case 0x41506:
swis.back().swi_name = "MessageTrans_ErrorLookup";
break;
case 0x4028a:
swis.back().swi_name = "Podule_EnumerateChunksWithInfo";
break;
case 0x4000a:
swis.back().swi_name = "Econet_ReadLocalStationAndNet";
break;
case 0x4000e:
swis.back().swi_name = "Econet_SetProtection";
break;
case 0x40015:
swis.back().swi_name = "Econet_ClaimPort";
break;
case 0x40541:
swis.back().swi_name = "FileCore_Create";
break;
case 0x80156:
case 0x8015b:
swis.back().swi_name = "PDriver_MiscOpForDriver";
break;
case 0x05:
swis.back().swi_name = "OS_CLI";
pointer = executor_.registers()[0];
break;
case 0x0d:
swis.back().swi_name = "OS_Find";
if(executor_.registers()[0] >= 0x40) {
pointer = executor_.registers()[1];
}
break;
case 0x1d:
swis.back().swi_name = "OS_Heap";
break;
case 0x1e:
swis.back().swi_name = "OS_Module";
break;
case 0x20:
swis.back().swi_name = "OS_Release";
break;
case 0x21:
swis.back().swi_name = "OS_ReadUnsigned";
break;
case 0x23:
swis.back().swi_name = "OS_ReadVarVal";
// R0: pointer to variable name.
pointer = executor_.registers()[0];
break;
case 0x24:
swis.back().swi_name = "OS_SetVarVal";
// R0: pointer to variable name.
pointer = executor_.registers()[0];
break;
case 0x26:
swis.back().swi_name = "OS_GSRead";
break;
case 0x27:
swis.back().swi_name = "OS_GSTrans";
pointer = executor_.registers()[0];
break;
case 0x29:
swis.back().swi_name = "OS_FSControl";
break;
case 0x2a:
swis.back().swi_name = "OS_ChangeDynamicArea";
break;
case 0x4c:
swis.back().swi_name = "OS_ReleaseDeviceVector";
break;
case 0x43057:
swis.back().swi_name = "Territory_LowerCaseTable";
break;
case 0x43058:
swis.back().swi_name = "Territory_UpperCaseTable";
break;
case 0x42fc0:
swis.back().swi_name = "Portable_Speed";
break;
case 0x42fc1:
swis.back().swi_name = "Portable_Control";
break;
}
if(pointer) {
while(true) {
uint8_t next;
executor_.bus.template read<uint8_t>(pointer, next, InstructionSet::ARM::Mode::Supervisor, false);
++pointer;
if(next < 32) break;
swis.back().value_name.push_back(static_cast<char>(next));
}
}
}
if(executor_.registers().pc_status(0) & InstructionSet::ARM::ConditionCode::Overflow) {
logger.error().append("SWI called with V set");
}
}
if(!swis.empty() && executor_.pc() == swis.back().return_address) {
// Overflow set => SWI failure.
auto &back = swis.back();
if(executor_.registers().pc_status(0) & InstructionSet::ARM::ConditionCode::Overflow) {
auto info = logger.info();
info.append("failed swi ");
if(back.swi_name.empty()) {
info.append("&%x", back.opcode & 0xfd'ffff);
} else {
info.append("%s", back.swi_name.c_str());
}
if(!back.value_name.empty()) {
info.append(" %s", back.value_name.c_str());
}
info.append(" @ %08x ", back.address);
for(uint32_t c = 0; c < 10; c++) {
info.append("r%d:%08x ", c, back.regs[c]);
}
}
swis.pop_back();
}
if(log) {
InstructionSet::ARM::Disassembler<arm_model> disassembler;
InstructionSet::ARM::dispatch<arm_model>(instruction, disassembler);
auto info = logger.info();
info.append("[%d] %08x: %08x\t\t%s\t prior:[",
instr_count,
executor_.pc(),
instruction,
disassembler.last().to_string(executor_.pc()).c_str());
for(uint32_t c = 0; c < 15; c++) {
info.append("r%d:%08x ", c, executor_.registers()[c]);
}
info.append("]");
}
opcodes.insert(instruction);
if(accumulate) {
int c = 0;
for(auto instr : opcodes) {
printf("0x%08x, ", instr);
++c;
if(!(c&15)) printf("\n");
}
accumulate = false;
}
// logger.info().append("%08x: %08x", executor_.pc(), instruction);
InstructionSet::ARM::execute(instruction, executor_);
++instr_count;
// if(
// executor_.pc() > 0x038021d0 &&
// last_r1 != executor_.registers()[1]
// ||
// (
// last_link != executor_.registers()[14] ||
// last_r0 != executor_.registers()[0] ||
// last_r10 != executor_.registers()[10] ||
// last_r1 != executor_.registers()[1]
// )
// ) {
// logger.info().append("%08x modified R14 to %08x; R0 to %08x; R10 to %08x; R1 to %08x",
// last_pc,
// executor_.registers()[14],
// executor_.registers()[0],
// executor_.registers()[10],
// executor_.registers()[1]
// );
// logger.info().append("%08x modified R1 to %08x",
// last_pc,
// executor_.registers()[1]
// );
// last_link = executor_.registers()[14];
// last_r0 = executor_.registers()[0];
// last_r10 = executor_.registers()[10];
// last_r1 = executor_.registers()[1];
// }
}
void tick_timers() { executor_.bus.tick_timers(); }
void tick_sound() { executor_.bus.sound().tick(); }
void tick_video() { executor_.bus.video().tick(); }
// MARK: - MediaTarget
bool insert_media(const Analyser::Static::Media &) override {
// int c = 0;
// for(auto &disk : media.disks) {
// fdc_.set_disk(disk, c);
// c++;
// if(c == 4) break;
// }
// return true;
return false;
}
// MARK: - Activity::Source.
void set_activity_observer(Activity::Observer *observer) final {
executor_.bus.set_activity_observer(observer);
}
// MARK: - MappedKeyboardMachine.
MappedKeyboardMachine::KeyboardMapper *get_keyboard_mapper() override {
return &keyboard_mapper_;
}
Archimedes::KeyboardMapper keyboard_mapper_;
void set_key_state(uint16_t key, bool is_pressed) override {
const int row = Archimedes::KeyboardMapper::row(key);
const int column = Archimedes::KeyboardMapper::column(key);
executor_.bus.keyboard().set_key_state(row, column, is_pressed);
}
// MARK: - ARM execution
static constexpr auto arm_model = InstructionSet::ARM::Model::ARMv2;
InstructionSet::ARM::Executor<arm_model, MemoryController<ConcreteMachine, ConcreteMachine>> executor_;
};
}
using namespace Archimedes;
std::unique_ptr<Machine> Machine::Archimedes(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return std::make_unique<ConcreteMachine>(*target, rom_fetcher);
}