mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-08 02:29:54 +00:00
596 lines
20 KiB
C++
596 lines
20 KiB
C++
//
|
|
// STX.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 13/11/2019.
|
|
// Copyright © 2019 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "STX.hpp"
|
|
|
|
#include "../../Encodings/MFM/Constants.hpp"
|
|
#include "../../Encodings/MFM/Shifter.hpp"
|
|
#include "../../Encodings/MFM/Encoder.hpp"
|
|
#include "../../Track/PCMTrack.hpp"
|
|
|
|
#include "Utility/ImplicitSectors.hpp"
|
|
|
|
#include <array>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
|
|
using namespace Storage::Disk;
|
|
|
|
namespace {
|
|
|
|
class TrackConstructor {
|
|
public:
|
|
constexpr static uint16_t NoFirstOffset = std::numeric_limits<uint16_t>::max();
|
|
|
|
struct Sector {
|
|
// Records explicitly present in the sector table.
|
|
uint32_t data_offset = 0;
|
|
size_t bit_position = 0;
|
|
uint16_t data_duration = 0;
|
|
std::array<uint8_t, 6> address = {0, 0, 0, 0, 0, 0};
|
|
uint8_t status = 0;
|
|
|
|
// Other facts that will either be supplied by the STX or which
|
|
// will be empty.
|
|
std::vector<uint8_t> fuzzy_mask;
|
|
std::vector<uint8_t> contents;
|
|
std::vector<uint16_t> timing;
|
|
|
|
// Accessors.
|
|
|
|
/// @returns The byte size of this sector, according to its address mark.
|
|
uint32_t data_size() const {
|
|
return uint32_t(128 << (address[3]&3));
|
|
}
|
|
|
|
struct Fragment {
|
|
int prior_syncs = 1;
|
|
std::vector<uint8_t> contents;
|
|
};
|
|
|
|
/// @returns The byte stream this sector address would produce if a WD read track command were to observe it.
|
|
std::vector<Fragment> get_track_address_fragments() const {
|
|
return track_fragments(address.begin(), address.begin() + 4, {0xa1, 0xa1, 0xfe});
|
|
}
|
|
|
|
/// @returns The byte stream this sector data would produce if a WD read track command were to observe it.
|
|
std::vector<Fragment> get_track_data_fragments() const {
|
|
return track_fragments(contents.begin(), contents.end(), {0xa1, 0xa1, 0xfb});
|
|
}
|
|
|
|
/*!
|
|
Acts like std::search except that it tries to find a start location from which all of the members of @c fragments
|
|
can be found in successive order with no more than a 'permissible' amount of gap between them.
|
|
|
|
Where 'permissible' is derived empirically from trial and error; in practice it's a measure of the number of bytes
|
|
a WD may produce when it has encountered a false sync, and I don't have documentation on that. So it's
|
|
derived from in-practice testing of STXs (which, hopefully, contain an accurate copy of what a WD would do,
|
|
so are themselves possibly a way to research that).
|
|
*/
|
|
template <typename Iterator> static Iterator find_fragments(Iterator begin, Iterator end, const std::vector<Fragment> &fragments) {
|
|
while(true) {
|
|
// To match the fragments, they must all be found, in order, with at most two bytes of gap.
|
|
auto this_begin = begin;
|
|
std::vector<uint8_t>::const_iterator first_location = end;
|
|
bool is_found = true;
|
|
bool is_first = true;
|
|
for(auto fragment: fragments) {
|
|
auto location = std::search(this_begin, end, fragment.contents.begin(), fragment.contents.end());
|
|
|
|
// If fragment wasn't found at all, it's never going to be found. So game over.
|
|
if(location == end) {
|
|
return location;
|
|
}
|
|
|
|
// Otherwise, either mark
|
|
if(is_first) {
|
|
first_location = location;
|
|
} else if(location > this_begin + 5*fragment.prior_syncs) {
|
|
is_found = false;
|
|
break;
|
|
}
|
|
|
|
is_first = false;
|
|
this_begin = location + ssize_t(fragment.contents.size());
|
|
}
|
|
|
|
if(is_found) {
|
|
return first_location;
|
|
}
|
|
|
|
// TODO: can I assume more than this?
|
|
++begin;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
private:
|
|
/// @returns The effect of encoding @c prefix followed by the bytes from @c begin to @c end as MFM data and then decoding them as if
|
|
/// observed by a WD read track command, split into fragments separated by any instances of false sync — since it's still unclear to me exactly what
|
|
/// a WD should put out in those instances.
|
|
template <typename T> static std::vector<Fragment> track_fragments(T begin, T end, std::initializer_list<uint8_t> prefix) {
|
|
std::vector<Fragment> result;
|
|
result.reserve(size_t(end - begin) + prefix.size());
|
|
|
|
PCMSegment segment;
|
|
std::unique_ptr<Storage::Encodings::MFM::Encoder> encoder = Storage::Encodings::MFM::GetMFMEncoder(segment.data);
|
|
|
|
// Encode prefix.
|
|
for(auto c: prefix) {
|
|
encoder->add_byte(c);
|
|
}
|
|
|
|
// Encode body.
|
|
while(begin != end) {
|
|
encoder->add_byte(*begin);
|
|
++begin;
|
|
}
|
|
|
|
// Decode, starting a new segment upon any false sync since I don't have good documentation
|
|
// presently on exactly how a WD should react to those.
|
|
using Shifter = Storage::Encodings::MFM::Shifter;
|
|
Shifter shifter;
|
|
shifter.set_should_obey_syncs(true);
|
|
shifter.set_is_double_density(true);
|
|
|
|
result.emplace_back();
|
|
|
|
// Add whatever comes from the track.
|
|
int ignore_count = 0;
|
|
for(auto bit: segment.data) {
|
|
shifter.add_input_bit(int(bit));
|
|
|
|
const auto token = shifter.get_token();
|
|
if(token != Shifter::None) {
|
|
if(ignore_count) {
|
|
--ignore_count;
|
|
continue;
|
|
}
|
|
|
|
// If anything other than a byte is encountered,
|
|
// skip it and the next thing to be reported,
|
|
// beginning a new fragment.
|
|
if(token != Shifter::Token::Byte) {
|
|
ignore_count = 1;
|
|
|
|
if(!result.back().contents.empty()) {
|
|
result.emplace_back();
|
|
} else {
|
|
++result.back().prior_syncs;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// This was an ordinary byte, retain it.
|
|
result.back().contents.push_back(shifter.get_byte());
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
|
|
TrackConstructor(const std::vector<uint8_t> &track_data, const std::vector<Sector> §ors, size_t track_size, uint16_t first_sync) :
|
|
track_data_(track_data), sectors_(sectors), track_size_(track_size), first_sync_(first_sync) {
|
|
(void)first_sync_;
|
|
}
|
|
|
|
std::shared_ptr<PCMTrack> get_track() {
|
|
// If no contents are supplied, return an unformatted track.
|
|
if(sectors_.empty() && track_data_.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// If no sectors are on this track, just encode the track data. STX allows speed
|
|
// changes and fuzzy bits in sectors only.
|
|
if(sectors_.empty()) {
|
|
PCMSegment segment;
|
|
std::unique_ptr<Storage::Encodings::MFM::Encoder> encoder = Storage::Encodings::MFM::GetMFMEncoder(segment.data);
|
|
for(auto c: track_data_) {
|
|
encoder->add_byte(c);
|
|
}
|
|
return std::make_shared<PCMTrack>(segment);
|
|
}
|
|
|
|
// Otherwise, seek to encode the sectors, using the track data to
|
|
// fill in the gaps (if provided).
|
|
std::unique_ptr<Storage::Encodings::MFM::Encoder> encoder;
|
|
std::vector<PCMSegment> segments;
|
|
|
|
// To reconcile the list of sectors with the WD get track-style track image,
|
|
// use sector bodies as definitive and refer to the track image for in-fill.
|
|
auto track_position = track_data_.begin();
|
|
const auto sync_mark = {0xa1, 0xa1};
|
|
struct Location {
|
|
enum Type {
|
|
Address, Data
|
|
} type;
|
|
std::vector<uint8_t>::const_iterator position;
|
|
const Sector §or;
|
|
|
|
Location(Type type, std::vector<uint8_t>::const_iterator position, const Sector §or) : type(type), position(position), sector(sector) {}
|
|
};
|
|
std::vector<Location> locations;
|
|
for(const auto §or: sectors_) {
|
|
{
|
|
// Find out what the address would look like, if found in a read track.
|
|
const auto address_fragments = sector.get_track_address_fragments();
|
|
|
|
// Try to locate the header within the track image; if it can't be found then settle for
|
|
// the next thing that looks like a header of any sort.
|
|
auto address_position = TrackConstructor::Sector::find_fragments(track_position, track_data_.end(), address_fragments);
|
|
if(address_position == track_data_.end()) {
|
|
address_position = std::search(track_position, track_data_.end(), sync_mark.begin(), sync_mark.end());
|
|
}
|
|
|
|
// Place this address only if somewhere to put it was found.
|
|
if(address_position != track_data_.end()) {
|
|
locations.emplace_back(Location::Address, address_position, sector);
|
|
|
|
// Advance the track position.
|
|
track_position = address_position + 6;
|
|
}
|
|
}
|
|
|
|
// Do much the same thing for the data, if it exists.
|
|
if(!(sector.status & 0x10)) {
|
|
const auto data_fragments = sector.get_track_data_fragments();
|
|
|
|
auto data_position = TrackConstructor::Sector::find_fragments(track_position, track_data_.end(), data_fragments);
|
|
if(data_position == track_data_.end()) {
|
|
data_position = std::search(track_position, track_data_.end(), sync_mark.begin(), sync_mark.end());
|
|
}
|
|
if(data_position == track_data_.end()) {
|
|
// Desperation: guess from the given offset.
|
|
data_position = track_data_.begin() + (sector.bit_position / 16);
|
|
}
|
|
|
|
locations.emplace_back(Location::Data, data_position, sector);
|
|
track_position = data_position + sector.data_size();
|
|
}
|
|
}
|
|
|
|
const auto encoder_at_rate = [&encoder, &segments](unsigned int rate) -> Storage::Encodings::MFM::Encoder* {
|
|
if(!encoder) {
|
|
segments.emplace_back();
|
|
segments.back().length_of_a_bit = Storage::Time(int(rate + 1), 1);
|
|
encoder = Storage::Encodings::MFM::GetMFMEncoder(segments.back().data, &segments.back().fuzzy_mask);
|
|
} else if(segments.back().length_of_a_bit.length != rate) {
|
|
segments.emplace_back();
|
|
segments.back().length_of_a_bit = Storage::Time(int(rate + 1), 1);
|
|
encoder->reset_target(segments.back().data, &segments.back().fuzzy_mask);
|
|
}
|
|
return encoder.get();
|
|
};
|
|
|
|
// Write out, being wary of potential overlapping sectors, and copying from track_data_ to fill in gaps.
|
|
auto location = locations.begin();
|
|
track_position = track_data_.begin();
|
|
while(location != locations.end()) {
|
|
// assert(location->position >= track_position && location->position < track_data_.end());
|
|
|
|
// Advance to location.position.
|
|
auto default_rate_encoder = encoder_at_rate(127);
|
|
while(track_position < location->position) {
|
|
default_rate_encoder->add_byte(*track_position);
|
|
++track_position;
|
|
}
|
|
|
|
// Write the relevant mark and fill in a default number of bytes to write.
|
|
size_t bytes_to_write;
|
|
switch(location->type) {
|
|
default:
|
|
case Location::Address:
|
|
default_rate_encoder->add_ID_address_mark();
|
|
bytes_to_write = 6;
|
|
break;
|
|
case Location::Data:
|
|
if(location->sector.status & 0x20)
|
|
default_rate_encoder->add_deleted_data_address_mark();
|
|
else
|
|
default_rate_encoder->add_data_address_mark();
|
|
bytes_to_write = location->sector.data_size() + 2;
|
|
break;
|
|
}
|
|
track_position += 3;
|
|
|
|
// Decide how much data to write for real; this [partially] allows for overlapping sectors.
|
|
auto next_location = location + 1;
|
|
if(next_location != locations.end()) {
|
|
bytes_to_write = std::min(bytes_to_write, size_t(next_location->position - track_position));
|
|
}
|
|
|
|
// Skip that many bytes from the underlying track image.
|
|
track_position += ssize_t(bytes_to_write);
|
|
|
|
// Write bytes.
|
|
switch(location->type) {
|
|
default:
|
|
case Location::Address:
|
|
for(size_t c = 0; c < bytes_to_write; ++c)
|
|
default_rate_encoder->add_byte(location->sector.address[c]);
|
|
break;
|
|
case Location::Data: {
|
|
const auto body_bytes = std::min(bytes_to_write, size_t(location->sector.data_size()));
|
|
|
|
// If timing information is attached to this sector, write each byte at the proper speed.
|
|
// (TODO: is there any benefit to optiming number of calls to encoder_at_rate?)
|
|
if(!location->sector.timing.empty()) {
|
|
for(size_t c = 0; c < body_bytes; ++c) {
|
|
encoder_at_rate(location->sector.timing[c >> 4])->add_byte(
|
|
location->sector.contents[c],
|
|
location->sector.fuzzy_mask.empty() ? 0x00 : location->sector.fuzzy_mask[c]
|
|
);
|
|
}
|
|
} else {
|
|
for(size_t c = 0; c < body_bytes; ++c) {
|
|
default_rate_encoder->add_byte(
|
|
location->sector.contents[c],
|
|
location->sector.fuzzy_mask.empty() ? 0x00 : location->sector.fuzzy_mask[c]
|
|
);
|
|
}
|
|
}
|
|
|
|
// Add a CRC only if it fits (TODO: crop if necessary?).
|
|
if(bytes_to_write & 127) {
|
|
default_rate_encoder = encoder_at_rate(127);
|
|
default_rate_encoder->add_crc((location->sector.status & 0x18) == 0x10);
|
|
}
|
|
} break;
|
|
}
|
|
|
|
// Advance location.
|
|
++location;
|
|
}
|
|
|
|
// Write anything remaining from the track image.
|
|
while(track_position < track_data_.end()) {
|
|
encoder->add_byte(*track_position);
|
|
++track_position;
|
|
}
|
|
|
|
// Count total size of track.
|
|
size_t track_size = 0;
|
|
for(auto &segment: segments) {
|
|
track_size += segment.data.size();
|
|
}
|
|
|
|
// Write generic padding up until the specified track size.
|
|
while(track_size < track_size_ * 16) {
|
|
encoder->add_byte(0x4e);
|
|
track_size += 16;
|
|
}
|
|
|
|
// Pad out to the minimum size a WD can actually make sense of.
|
|
// I've no idea why it's valid for tracks to be shorter than this,
|
|
// so likely I'm suffering a comprehansion deficiency.
|
|
// TODO: determine why this isn't correct (or, possibly, is).
|
|
while(track_size < 5750 * 16) {
|
|
encoder->add_byte(0x4e);
|
|
track_size += 16;
|
|
}
|
|
|
|
return std::make_shared<PCMTrack>(segments);
|
|
}
|
|
|
|
private:
|
|
const std::vector<uint8_t> &track_data_;
|
|
const std::vector<Sector> §ors_;
|
|
const size_t track_size_;
|
|
const uint16_t first_sync_;
|
|
};
|
|
|
|
}
|
|
|
|
STX::STX(const std::string &file_name) : file_(file_name) {
|
|
// Require that this be a version 3 Pasti.
|
|
if(!file_.check_signature("RSY", 4)) throw Error::InvalidFormat;
|
|
if(file_.get16le() != 3) throw Error::InvalidFormat;
|
|
|
|
// Skip: tool used, 2 reserved bytes.
|
|
file_.seek(4, SEEK_CUR);
|
|
|
|
// Skip the track count, test for a new-style encoding, skip a reserved area.
|
|
file_.seek(1, SEEK_CUR);
|
|
is_new_format_ = file_.get8() == 2;
|
|
file_.seek(4, SEEK_CUR);
|
|
|
|
// Set all tracks absent.
|
|
memset(offset_by_track_, 0, sizeof(offset_by_track_));
|
|
|
|
// Parse the tracks table to fill in offset_by_track_. The only available documentation
|
|
// for STX is unofficial and makes no promise about track order. Hence the bucket sort,
|
|
// effectively putting them into track order.
|
|
//
|
|
// Track descriptor layout:
|
|
//
|
|
// 0 4 Record size.
|
|
// 4 4 Number of bytes in fuzzy mask record.
|
|
// 8 2 Number of sectors on track.
|
|
// 10 2 Track flags.
|
|
// 12 2 Total number of bytes on track.
|
|
// 14 1 Track number (b7 = side, b0-b6 = track).
|
|
// 15 1 Track type.
|
|
track_count_ = 0;
|
|
head_count_ = 1;
|
|
while(true) {
|
|
const long offset = file_.tell();
|
|
const uint32_t size = file_.get32le();
|
|
if(file_.eof()) break;
|
|
|
|
// Skip fields other than track position, then fill in table position and advance.
|
|
file_.seek(10, SEEK_CUR);
|
|
|
|
const uint8_t track_position = file_.get8();
|
|
offset_by_track_[track_position] = offset;
|
|
|
|
// Update the maximum surface dimensions.
|
|
track_count_ = std::max(track_count_, track_position & 0x7f);
|
|
head_count_ = std::max(head_count_, ((track_position & 0x80) >> 6));
|
|
|
|
// Seek next track start.
|
|
file_.seek(offset + size, SEEK_SET);
|
|
}
|
|
}
|
|
|
|
HeadPosition STX::get_maximum_head_position() {
|
|
return HeadPosition(track_count_ + 1); // Same issue as MSA; must fix!
|
|
}
|
|
|
|
int STX::get_head_count() {
|
|
return head_count_;
|
|
}
|
|
|
|
std::shared_ptr<::Storage::Disk::Track> STX::get_track_at_position(::Storage::Disk::Track::Address address) {
|
|
// These images have two sides, at most.
|
|
if(address.head > 1) return nullptr;
|
|
|
|
// If no track was found, there's nothing to do here.
|
|
const int track_index = (address.head * 0x80) + address.position.as_int();
|
|
if(!offset_by_track_[track_index]) return nullptr;
|
|
|
|
// Seek to the track (skipping the record size field).
|
|
file_.seek(offset_by_track_[track_index] + 4, SEEK_SET);
|
|
|
|
// Grab the track description.
|
|
const uint32_t fuzzy_size = file_.get32le();
|
|
const uint16_t sector_count = file_.get16le();
|
|
const uint16_t flags = file_.get16le();
|
|
const size_t track_length = file_.get16le();
|
|
file_.seek(2, SEEK_CUR); // Skip track type; despite being named, it's apparently unused.
|
|
|
|
// If this is a trivial .ST-style sector dump, life is easy.
|
|
if(!(flags & 1)) {
|
|
const auto sector_contents = file_.read(sector_count * 512);
|
|
return track_for_sectors(sector_contents.data(), sector_count, uint8_t(address.position.as_int()), uint8_t(address.head), 1, 2, true);
|
|
}
|
|
|
|
// Grab sector records, if provided.
|
|
std::vector<TrackConstructor::Sector> sectors;
|
|
std::vector<uint8_t> track_data;
|
|
uint16_t first_sync = TrackConstructor::NoFirstOffset;
|
|
|
|
// Sector records come first.
|
|
for(uint16_t c = 0; c < sector_count; ++c) {
|
|
sectors.emplace_back();
|
|
sectors.back().data_offset = file_.get32le();
|
|
sectors.back().bit_position = file_.get16le();
|
|
sectors.back().data_duration = file_.get16le();
|
|
file_.read(sectors.back().address);
|
|
sectors.back().status = file_.get8();
|
|
file_.seek(1, SEEK_CUR);
|
|
}
|
|
|
|
// If fuzzy masks are specified, attach them to their corresponding sectors.
|
|
if(fuzzy_size) {
|
|
uint32_t fuzzy_bytes_read = 0;
|
|
for(auto §or: sectors) {
|
|
// Check for the fuzzy bit mask; if it's not set then
|
|
// there's nothing for this sector.
|
|
if(!(sector.status & 0x80)) continue;
|
|
|
|
// Make sure there are enough bytes left.
|
|
const uint32_t expected_bytes = sector.data_size();
|
|
if(fuzzy_bytes_read + expected_bytes > fuzzy_size) break;
|
|
|
|
// Okay, there are, so read them.
|
|
sector.fuzzy_mask = file_.read(expected_bytes);
|
|
fuzzy_bytes_read += expected_bytes;
|
|
}
|
|
|
|
// It should be true that the number of fuzzy masks caused
|
|
// exactly the correct number of fuzzy bytes to be read.
|
|
// But, just in case, check and possibly skip some.
|
|
file_.seek(long(fuzzy_size) - fuzzy_bytes_read, SEEK_CUR);
|
|
}
|
|
|
|
// There may or may not be a track image. Grab it if so.
|
|
|
|
// Grab the read-track-esque track contents, if available.
|
|
long sector_start = file_.tell();
|
|
if(flags & 0x40) {
|
|
// Bit 6 => there is a track to read;
|
|
// bit
|
|
if(flags & 0x80) {
|
|
first_sync = file_.get16le();
|
|
const uint16_t image_size = file_.get16le();
|
|
track_data = file_.read(image_size);
|
|
} else {
|
|
const uint16_t image_size = file_.get16le();
|
|
track_data = file_.read(image_size);
|
|
}
|
|
}
|
|
|
|
// Grab sector contents.
|
|
long end_of_data = file_.tell();
|
|
for(auto §or: sectors) {
|
|
// If the FDC record-not-found flag is set, there's no sector body to find.
|
|
// Otherwise there's a sector body in the file somewhere.
|
|
if(!(sector.status & 0x10)) {
|
|
file_.seek(sector.data_offset + sector_start, SEEK_SET);
|
|
sector.contents = file_.read(sector.data_size());
|
|
end_of_data = std::max(end_of_data, file_.tell());
|
|
}
|
|
}
|
|
file_.seek(end_of_data, SEEK_SET);
|
|
|
|
// Grab timing info if available.
|
|
file_.seek(4, SEEK_CUR); // Skip the timing descriptor, as it includes no new information.
|
|
for(auto §or: sectors) {
|
|
// Skip any sector with no intra-sector bit width variation.
|
|
if(!(sector.status&1)) continue;
|
|
|
|
const auto timing_record_size = sector.data_size() >> 4; // Use one entry per 16 bytes.
|
|
sector.timing.resize(timing_record_size);
|
|
|
|
if(!is_new_format_) {
|
|
// Generate timing records for Macrodos/Speedlock.
|
|
// Timing is specified in quarters. Which might or might not be
|
|
// quantities of 128 bytes, who knows?
|
|
for(size_t c = 0; c < timing_record_size; ++c) {
|
|
if(c < (timing_record_size >> 2)) {
|
|
sector.timing[c] = 127;
|
|
} else if(c < ((timing_record_size*2) >> 2)) {
|
|
sector.timing[c] = 133;
|
|
} else if(c < ((timing_record_size*3) >> 2)) {
|
|
sector.timing[c] = 121;
|
|
} else {
|
|
sector.timing[c] = 127;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// This is going to be a new-format record.
|
|
for(size_t c = 0; c < timing_record_size; ++c) {
|
|
sector.timing[c] = file_.get16be(); // These values are big endian, unlike the rest of the file.
|
|
}
|
|
}
|
|
|
|
// Sort the sectors by starting position. It's perfectly possible that they're always
|
|
// sorted in STX but, again, the reverse-engineered documentation doesn't make the
|
|
// promise, so that's that.
|
|
std::sort(sectors.begin(), sectors.end(),
|
|
[] (TrackConstructor::Sector &lhs, TrackConstructor::Sector &rhs) {
|
|
return lhs.bit_position < rhs.bit_position;
|
|
});
|
|
|
|
|
|
/*
|
|
Having reached here, the actual stuff of parsing the file structure should be done.
|
|
So hand off to the TrackConstructor.
|
|
|
|
*/
|
|
|
|
TrackConstructor constructor(track_data, sectors, track_length, first_sync);
|
|
return constructor.get_track();
|
|
}
|