1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Components/6526/Implementation/6526Storage.hpp
2024-01-16 23:34:46 -05:00

333 lines
7.7 KiB
C++

//
// 6526Storage.hpp
// Clock Signal
//
// Created by Thomas Harte on 18/07/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#pragma once
#include <array>
#include "../../../ClockReceiver/ClockReceiver.hpp"
namespace MOS::MOS6526 {
class TODBase {
public:
template <bool is_timer2> void set_control(uint8_t value) {
if constexpr (is_timer2) {
write_alarm = value & 0x80;
} else {
is_50Hz = value & 0x80;
}
}
protected:
bool write_alarm = false, is_50Hz = false;
};
template <bool is_8250> class TODStorage {};
template <> class TODStorage<false>: public TODBase {
private:
bool increment_ = true, latched_ = false;
int divider_ = 0;
std::array<uint8_t, 4> value_;
std::array<uint8_t, 4> latch_;
std::array<uint8_t, 4> alarm_;
static constexpr uint8_t masks[4] = {0xf, 0x3f, 0x3f, 0x1f};
void bcd_increment(uint8_t &value) {
++value;
if((value&0x0f) > 0x09) value += 0x06;
}
public:
template <int byte> void write(uint8_t v) {
if(write_alarm) {
alarm_[byte] = v & masks[byte];
} else {
value_[byte] = v & masks[byte];
if constexpr (byte == 0) {
increment_ = true;
}
if constexpr (byte == 3) {
increment_ = false;
}
}
}
template <int byte> uint8_t read() {
if(latched_) {
const uint8_t result = latch_[byte];
if constexpr (byte == 0) {
latched_ = false;
}
return result;
}
if constexpr (byte == 3) {
latched_ = true;
latch_ = value_;
}
return value_[byte];
}
bool advance(int count) {
if(!increment_) {
return false;
}
while(count--) {
// Increment the pre-10ths divider.
++divider_;
if(divider_ < 5) continue;
if(divider_ < 6 && !is_50Hz) continue;
divider_ = 0;
// Increments 10ths of a second. One BCD digit.
++value_[0];
if(value_[0] < 10) {
continue;
}
// Increment seconds. Actual BCD needed from here onwards.
bcd_increment(value_[1]);
if(value_[1] != 60) {
continue;
}
value_[1] = 0;
// Increment minutes.
bcd_increment(value_[2]);
if(value_[2] != 60) {
continue;
}
value_[2] = 0;
// TODO: increment hours, keeping AM/PM separate?
}
return false; // TODO: test against alarm.
}
};
template <> class TODStorage<true>: public TODBase {
private:
uint32_t increment_mask_ = uint32_t(~0);
uint32_t latch_ = 0;
uint32_t value_ = 0;
uint32_t alarm_ = 0xff'ffff;
public:
template <int byte> void write(uint8_t v) {
if constexpr (byte == 3) {
return;
}
constexpr int shift = byte << 3;
// Write to either the alarm or the current value as directed;
// writing to any part of the current value other than the LSB
// pauses incrementing until the LSB is written.
const uint32_t mask = uint32_t(~(0xff << shift));
if(write_alarm) {
alarm_ = (alarm_ & mask) | uint32_t(v << shift);
} else {
value_ = (value_ & mask) | uint32_t(v << shift);
increment_mask_ = (byte == 0) ? uint32_t(~0) : 0;
}
}
template <int byte> uint8_t read() {
if constexpr (byte == 3) {
return 0xff; // Assumed. Just a guess.
}
constexpr int shift = byte << 3;
if constexpr (byte == 2) {
latch_ = value_ | 0xff00'0000;
}
const uint32_t source = latch_ ? latch_ : value_;
const uint8_t result = uint8_t((source >> shift) & 0xff);
if constexpr (byte == 0) {
latch_ = 0;
}
return result;
}
bool advance(int count) {
// The 8250 uses a simple binary counter to replace the
// 6526's time-of-day clock. So this is easy.
const uint32_t distance_to_alarm = (alarm_ - value_) & 0xff'ffff;
const auto increment = uint32_t(count) & increment_mask_;
value_ = (value_ + increment) & 0xff'ffff;
return distance_to_alarm <= increment;
}
};
struct MOS6526Storage {
bool cnt_state_ = false; // Inactive by default.
bool cnt_edge_ = false;
bool flag_state_ = false;
HalfCycles half_divider_;
uint8_t output_[2] = {0, 0};
uint8_t data_direction_[2] = {0, 0};
uint8_t interrupt_control_ = 0;
uint8_t interrupt_state_ = 0;
uint8_t shift_data_ = 0;
uint8_t shift_register_ = 0;
int shift_bits_ = 0;
bool shifter_is_output_ = false;
struct Counter {
uint16_t reload = 0;
uint16_t value = 0;
uint8_t control = 0;
template <int shift, bool is_8250> void set_reload(uint8_t v) {
reload = (reload & (0xff00 >> shift)) | uint16_t(v << shift);
if constexpr (shift == 8) {
// This seems to be a special 8250 feature per the Amiga
// Hardware Reference Manual; cf. Appendix F.
if(is_8250) {
control |= 1;
pending |= ReloadInOne;
} else {
if(!(control&1)) {
pending |= ReloadInOne;
}
}
}
// If this write has hit during a reload cycle, reload.
if(pending & ReloadNow) {
value = reload;
}
}
template <bool is_counter_2> void set_control(uint8_t v) {
control = v;
if(v&2) {
printf("UNIMPLEMENTED: PB strobe\n");
}
}
template <bool is_counter_2> bool advance(bool chained_input, bool cnt_state, bool cnt_edge) {
// TODO: remove most of the conditionals here in favour of bit shuffling.
pending = (pending & PendingClearMask) << 1;
//
// Apply feeder states inputs: anything that
// will take effect in the future.
//
// Schedule a force reload if requested.
if(control & 0x10) {
pending |= ReloadInOne;
control &= ~0x10;
}
// Keep a history of the one-shot bit.
if(control & 0x08) {
pending |= OneShotInOne;
}
// Determine whether an input clock is applicable.
if constexpr(is_counter_2) {
switch(control&0x60) {
case 0x00: // Count Phi2 pulses.
pending |= TestInputNow;
break;
case 0x20: // Count negative CNTs, with an extra cycle of delay.
pending |= cnt_edge ? TestInputInOne : 0;
break;
case 0x40: // Count timer A reloads.
pending |= chained_input ? TestInputNow : 0;
break;
case 0x60: // Count timer A transitions when CNT is low.
pending |= chained_input && cnt_state ? TestInputNow : 0;
break;
}
} else {
if(!(control&0x20)) {
pending |= TestInputNow;
} else if (cnt_edge) {
pending |= TestInputInOne;
}
}
if(pending&TestInputNow && control&1) {
pending |= ApplyClockInTwo;
}
//
// Perform a timer tick and decide whether a reload is prompted.
//
if(pending & ApplyClockNow) {
--value;
}
const bool should_reload = !value && (pending & ApplyClockInOne);
// Schedule a reload if so ordered.
if(should_reload) {
pending |= ReloadNow; // Combine this decision with a deferred
// input from the force-reoad test above.
// If this was one-shot, stop.
if(pending&(OneShotInOne | OneShotNow)) {
control &= ~1;
pending &= ~(ApplyClockInOne|ApplyClockInTwo); // Cancel scheduled ticks.
}
}
// Reload if scheduled.
if(pending & ReloadNow) {
value = reload;
pending &= ~ApplyClockInOne; // Skip next decrement.
}
return should_reload;
}
private:
int pending = 0;
static constexpr int ReloadInOne = 1 << 0;
static constexpr int ReloadNow = 1 << 1;
static constexpr int OneShotInOne = 1 << 2;
static constexpr int OneShotNow = 1 << 3;
static constexpr int ApplyClockInTwo = 1 << 4;
static constexpr int ApplyClockInOne = 1 << 5;
static constexpr int ApplyClockNow = 1 << 6;
static constexpr int TestInputInOne = 1 << 7;
static constexpr int TestInputNow = 1 << 8;
static constexpr int PendingClearMask = ~(ReloadNow | OneShotNow | ApplyClockNow);
} counter_[2];
static constexpr int InterruptInOne = 1 << 0;
static constexpr int InterruptNow = 1 << 1;
static constexpr int PendingClearMask = ~(InterruptNow);
int pending_ = 0;
};
}