1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 15:31:09 +00:00
CLK/Storage/Tape/Parsers/Spectrum.cpp

221 lines
6.1 KiB
C++

//
// Spectrum.cpp
// Clock Signal
//
// Created by Thomas Harte on 07/03/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "Spectrum.hpp"
#include "../../../Numeric/CRC.hpp"
#include <cstring>
//
// Sources used for the logic below:
//
// https://sinclair.wiki.zxnet.co.uk/wiki/Spectrum_tape_interface
// http://www.cpctech.cpc-live.com/docs/manual/s968se08.pdf
// https://www.alessandrogrussu.it/tapir/tzxform120.html
//
using namespace Storage::Tape::ZXSpectrum;
Parser::Parser(MachineType machine_type) :
machine_type_(machine_type) {}
void Parser::process_pulse(const Storage::Tape::Tape::Pulse &pulse) {
if(pulse.type == Storage::Tape::Tape::Pulse::Type::Zero) {
push_wave(WaveType::Gap);
return;
}
// Only pulse duration matters; the ZX Spectrum et al do not rely on polarity.
const float t_states = pulse.length.get<float>() * 3'500'000.0f;
switch(speed_phase_) {
case SpeedDetectionPhase::WaitingForGap:
// A gap is: any 'pulse' of at least 3000 t-states.
if(t_states >= 3000.0f) {
speed_phase_ = SpeedDetectionPhase::WaitingForPilot;
}
return;
case SpeedDetectionPhase::WaitingForPilot:
// Pilot tone might be: any pulse of less than 3000 t-states.
if(t_states >= 3000.0f) return;
speed_phase_ = SpeedDetectionPhase::CalibratingPilot;
calibration_pulse_pointer_ = 0;
[[fallthrough]];
case SpeedDetectionPhase::CalibratingPilot: {
// Pilot calibration: await at least 8 consecutive pulses of similar length.
calibration_pulses_[calibration_pulse_pointer_] = t_states;
++calibration_pulse_pointer_;
// Decide whether it looks like this isn't actually pilot tone.
float mean = 0.0f;
for(size_t c = 0; c < calibration_pulse_pointer_; c++) {
mean += calibration_pulses_[c];
}
mean /= float(calibration_pulse_pointer_);
for(size_t c = 0; c < calibration_pulse_pointer_; c++) {
if(calibration_pulses_[c] < mean * 0.9f || calibration_pulses_[c] > mean * 1.1f) {
speed_phase_ = SpeedDetectionPhase::WaitingForGap;
return;
}
}
// Advance only if 8 are present.
if(calibration_pulse_pointer_ == calibration_pulses_.size()) {
speed_phase_ = SpeedDetectionPhase::Done;
// Note at least one full cycle of pilot tone.
push_wave(WaveType::Pilot);
push_wave(WaveType::Pilot);
// Configure proper parameters for the autodetection machines.
switch(machine_type_) {
default: break;
case MachineType::AmstradCPC:
// CPC: pilot tone is length of bit 1; bit 0 is half that.
// So no more detecting formal pilot waves.
set_cpc_one_zero_boundary(mean * 0.75f);
break;
case MachineType::Enterprise:
// There's a third validation check here: is this one of the two
// permitted recording speeds?
if(!(
(mean >= 742.0f*0.9f && mean <= 742.0f*1.0f/0.9f) ||
(mean >= 1750.0f*0.9f && mean <= 1750.0f*1.0f/0.9f)
)) {
speed_phase_ = SpeedDetectionPhase::WaitingForGap;
return;
}
// TODO: not yet supported. As below, needs to deal with sync != zero.
assert(false);
break;
case MachineType::SAMCoupe: {
// TODO: not yet supported. Specifically because I don't think my sync = zero
// assumption even vaguely works here?
assert(false);
} break;
}
}
} return;
default:
break;
}
// Too long or too short => gap.
if(t_states >= too_long_ || t_states <= too_short_) {
push_wave(WaveType::Gap);
return;
}
// Potentially announce pilot.
if(t_states >= is_pilot_) {
push_wave(WaveType::Pilot);
return;
}
// Otherwise it's either a one or a zero.
push_wave(t_states > is_one_ ? WaveType::One : WaveType::Zero);
}
void Parser::set_cpc_read_speed(uint8_t speed) {
// This may not be exactly right; I wish there were more science here but
// instead it's empirical based on tape speed versus value stored plus
// a guess as to where the CPC puts the dividing line.
set_cpc_one_zero_boundary(float(speed) * 14.35f);
}
void Parser::set_cpc_one_zero_boundary(float boundary) {
is_one_ = boundary;
too_long_ = is_one_ * 16.0f / 9.0f;
too_short_ = is_one_ * 0.5f;
is_pilot_ = too_long_;
}
void Parser::inspect_waves(const std::vector<Storage::Tape::ZXSpectrum::WaveType> &waves) {
switch(waves[0]) {
// Gap and Pilot map directly.
case WaveType::Gap: push_symbol(SymbolType::Gap, 1); break;
case WaveType::Pilot: push_symbol(SymbolType::Pilot, 1); break;
// Both one and zero waves should come in pairs.
case WaveType::One:
case WaveType::Zero:
if(waves.size() < 2) return;
if(waves[1] == waves[0]) {
push_symbol(waves[0] == WaveType::One ? SymbolType::One : SymbolType::Zero, 2);
} else {
push_symbol(SymbolType::Gap, 1);
}
break;
}
}
std::optional<Block> Parser::find_block(const std::shared_ptr<Storage::Tape::Tape> &tape) {
// Decide whether to kick off a speed detection phase.
if(should_detect_speed()) {
speed_phase_ = SpeedDetectionPhase::WaitingForGap;
}
// Find pilot tone.
proceed_to_symbol(tape, SymbolType::Pilot);
if(is_at_end(tape)) return std::nullopt;
// Find sync bit.
proceed_to_symbol(tape, SymbolType::Zero);
if(is_at_end(tape)) return std::nullopt;
// Read marker byte.
const auto type = get_byte(tape);
if(!type) return std::nullopt;
// That succeeded.
Block block = {
.type = *type
};
return block;
}
std::vector<uint8_t> Parser::get_block_body(const std::shared_ptr<Storage::Tape::Tape> &tape) {
std::vector<uint8_t> result;
while(true) {
const auto next_byte = get_byte(tape);
if(!next_byte) break;
result.push_back(*next_byte);
}
return result;
}
void Parser::seed_checksum(uint8_t value) {
checksum_ = value;
}
std::optional<uint8_t> Parser::get_byte(const std::shared_ptr<Storage::Tape::Tape> &tape) {
uint8_t result = 0;
for(int c = 0; c < 8; c++) {
const SymbolType symbol = get_next_symbol(tape);
if(symbol != SymbolType::One && symbol != SymbolType::Zero) return std::nullopt;
result = uint8_t((result << 1) | (symbol == SymbolType::One));
}
if(should_flip_bytes()) {
result = CRC::reverse_byte(result);
}
checksum_ ^= result;
return result;
}